
EUROGRAPHICS 2008 / G. Drettakis and R. Scopigno
(Guest Editors)

Volume 27 (2008), Number 2

GPU-based Fast Ray Casting for a Large Number of
Metaballs

Yoshihiro Kanamori, Zoltan Szego and Tomoyuki Nishita

The University of Tokyo, Japan
{pierrot,szegoz,nis}@nis-lab.is.s.u-tokyo.ac.jp

Abstract

Metaballs are implicit surfaces widely used to model curved objects, represented by the isosurface of a density field
defined by a set of points. Recently, the results of particle-based simulations have been often visualized using a
large number of metaballs, however, such visualizations have high rendering costs. In this paper we propose a fast
technique for rendering metaballs on the GPU. Instead of using polygonization, the isosurface is directly evaluated
in a per-pixel manner. For such evaluation, all metaballs contributing to the isosurface need to be extracted along
each viewing ray, on the limited memory of GPUs. We handle this by keeping a list of metaballs contributing to
the isosurface and efficiently update it. Our method neither requires expensive precomputation nor acceleration
data structures often used in existing ray tracing techniques. With several optimizations, we can display a large
number of moving metaballs quickly.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Animation I.3.3 [Com-
puter Graphics]: Display Algorithm

1. Introduction

The use of implicit surfaces, such as metaballs [NHK∗85]
(also referred to as blobs [Bli82] or soft objects [WMW86]),
to represent smooth objects has been widespread in com-
puter graphics. In recent years, metaballs have been widely
used to visualize the results of particle-based simulations.
Since such simulations use thousands or tens of thousands
of particles, a fast visualization method that can handle a
large number of metaballs at high quality is desirable.

Each metaball has a density function, and a set of meta-
balls represents a smooth surface as the isosurface of the
density field. The isosurface is mainly visualized by poly-
gonization [LC87,Ura06] or ray casting [WT90,NN94].

The visual quality of the surface created by polygoniza-
tion depends on the resolution of the grid, forming a trade-
off in relation to computational cost; with a low-resolution
grid, polygonization performs quite fast, however, causes ar-
tifacts on the generated surface. Even worse, polygonization
can completely miss objects smaller than the grid resolution,
such as splashes of fluids. Conversely, with a high-resolution
grid, polygonization can keep the fine details and generate

Figure 1: Screenshot from an animation with 1,000 moving
metaballs, rendered in 640×480 at 23.1 fps. Unlike polygo-
nization, even small particles are rendered smoothly.

high quality surfaces, however, it incurs quite high compu-
tational and memory costs, and is not suited for interactive
applications.

submitted to EUROGRAPHICS 2008.

Copyright notice
This is a preliminary version of the article. The definite version will be published in the proceedings of Eurographics 2008 and will be available online at diglib.eg.org

pierrot
ノート
pierrot : Marked

2 Kanamori, Szego and Nishita / GPU-based Fast Ray Casting for a Large Number of Metaballs

On the other hand, in the case of ray casting, the com-
putational cost depends primarily on the screen resolution.
Ray casting can produce high quality smooth surfaces even
for small objects, however, generally causes an extremely
high computational cost. In order to perform a ray-isosurface
intersection test, we need to extract the metaballs that con-
tribute to the isosurface along the viewing ray, then construct
and solve an equation for the intersection test.

In this paper, we propose a fast ray casting method to
render metaballs on the GPU. The basic workflow of our
method is simple: First we obtain the intersection points of
each viewing ray and the spheres representing the effective
ranges of metaballs using depth peeling [Mam89, Eve02].
Next, after each pass of depth peeling, we perform a ray-
isosurface intersection test using Bézier Clipping [NSK90].
When performing this intersection test on the GPU, we need
to extract the metaballs contributing to the isosurface along
each viewing ray, on the limited amount of memory avail-
able. We propose an efficient algorithm to solve this prob-
lem. By optimizing the major parts of our rendering process,
depth peeling and the isosurface test, our method can display
a large number of moving metaballs quickly (see Figure 1).
We demonstrate that our method is useful for previewing the
results of particle-based simulations such as fluid dynamics
and molecular dynamics.

2. Related Work

In this section, we first briefly introduce related work on
the density functions of metaballs, then mention recent tech-
niques related to rendering smooth surfaces on the GPU.

2.1. Density Functions of Metaballs

The density function fi for metaball i is a function of r, the
distance from that metaball’s center pi ∈ R

3, and monoton-
ically decreases as r increases. If fi has a finite support Ri,
fi(r) = 0 in the range of r ≥ Ri. Ri represents the effective
radius of metaball i. Throughout this paper, we refer to the
sphere centered at pi with radius Ri as metaball i’s "effec-
tive sphere" (illustrated with solid circles in Figure 2). For
N metaballs, the shape of the curved surface is defined by
the points x ∈ R

3 satisfying the following equation:

f (x) =
N−1

∑
i=0

qi fi(‖x−pi‖)−T = 0, (1)

where T is a threshold, and {qi} are the density coefficients.
The normal vector at x can be derived from −∇f (x).

The first particle-based implicit surface proposed in com-
puter graphics was Blinn’s blob [Bli82]. Blinn defined the
density function as a Gaussian function, however, the cal-
culation of the isosurface becomes expensive since a Gaus-
sian function has an infinite support and thus every blob

has to be taken into account. This is why several func-
tions with finite supports have been proposed, such as piece-
wise quadratic [NHK∗85], quartic [MI87] and degree-six
polynomials [WMW86]. While these polynomials produce
smoother results for higher degrees, the computational cost
of solving the equations for isosurface tests also increases
with the degree. Nishita and Nakamae [NN94] used Bézier
Clipping to solve equations with the quartic and degree-six
polynomials quickly. Sherstyuk [She99] used piecewise cu-
bic Hermite polynomials to approximate arbitrary density
functions. Our method deals with the above-mentioned quar-
tic and degree-six polynomials, and solves the equations ac-
curately without any approximations.

2.2. GPU-based Surface Rendering

There are several GPU-based ray casting methods, such as
NURBS [PSS∗06], subdivision surfaces [YK04], SLIM sur-
faces [KOKK06,SGS06] and point set surfaces [GG07].

Loop and Blinn [LB06] proposed a GPU-based ray
casting method to render algebraic surfaces defined by
Bézier tetrahedrons with up to quartic polynomials. For ray-
isosurface intersection tests, the coefficients of the equa-
tions are efficiently computed by linearly interpolating the
vertex attributes of each tetrahedron. Consequently, their
method can render just two metaballs much faster than ours.
However, the computation of vertex attributes must take the
neighboring metaballs into account, which can be a consid-
erable performance hit for a large number of moving meta-
balls. Our method can efficiently handle such scenes, as well
as equations with a degree higher than four.

Iwasaki et al. [IYDN06] used metaballs for visualizing
the results of a particle-based fluid simulation. They divided
the space into a grid, and accelerated the evaluation of the
density function at each grid point using the GPU. Similarly
to polygonization, however, their method can miss small
splashes. Recently, van Kooten et al. [vKvdBT07] visualized
metaballs on the GPU, using on-surface particles distributed
by repulsive forces. Their method can exploit the temporal
coherence of animations, however, as they reported, it suf-
fers from small objects due to the limited resolution of the
buffer for repulsion computations. Since our method is based
on ray casting, it can display small objects.

3. Basic Framework for Rendering Metaballs

Since our method is based on the ray-isosurface intersection
test as proposed by Nishita and Nakamae [NN94], we first
describe the basic process of their rendering algorithm, then
introduce Bézier Clipping, which we use as a solver.

3.1. Nishita and Nakamae’s Algorithm

In Nishita and Nakamae’s algorithm, the metaballs’ density
function is defined to have a finite support. Since the equa-
tions for the isosurface tests change for each interval defined

submitted to EUROGRAPHICS 2008.

Kanamori, Szego and Nishita / GPU-based Fast Ray Casting for a Large Number of Metaballs 3

Figure 2: The basic framework for rendering metaballs.
{B0, . . . ,B3} are the metaballs’ IDs, and {t0, . . . , t5} the pa-
rameters for each intersection point along the ray R1.

by two consecutive intersections of the viewing ray and the
effective spheres, a ray-isosurface intersection test is per-
formed for each interval. First, their algorithm calculates the
intersections of the viewing ray with every effective sphere,
and sorts these intersections by increasing distance from the
viewpoint. Then, for each interval on the viewing ray, their
algorithm proceeds to find the isosurface depending on the
number of effective spheres intersected in the interval (Fig-
ure 2):

Single Case (only one effective sphere intersected):
The isosurface is spherical, therefore just a ray-sphere
intersection test is performed. The radius of the sphere
can be precomputed for fast runtime evaluation.

Multiple Case (two or more effective spheres intersected):
After extracting the metaballs intersected by the viewing
ray, an equation in Bézier form (see Appendix A) is
constructed, and solved using Bézier Clipping.

Their algorithm performed the above processing scanline
by scanline, sequentially for each pixel. Such processing
is a good candidate for parallelization, thus we can expect
speedups by moving it to the GPU. One challenge of us-
ing the GPU is that we have to extract metaballs necessary
for isosurface tests with limited memory. For example, along
the ray R1 in Figure 2, in the interval [t0,t1] we need only B2
for the isosurface test, while in [t2,t3], we need B1, B2 and
B3. We propose an efficient algorithm to do this extraction,
enabling ray casting to take advantage of the parallel pro-
cessing power of GPUs.

3.2. Bézier Clipping

Bézier Clipping was introduced by Nishita et al. [NSK90] as
a fast method to compute the intersection between the view-
ing ray and a Bézier surface. See Figure 3 for a simple 1D
explanation. A degree-M Bézier curve is denoted with a pa-

Figure 3: One-dimensional Bézier Clipping.

rameter u ∈ [0,1] as follows:

D(u) = (u, d(u)) =
M

∑
i=0

Di B
M
i (u), (2)

where B represents the Bernstein polynomial, BM
i (u) =(M

i

)
ui(1−u)M−i, Di the control points, Di = (i/M,di). The

Bézier curve D(u) is always inside the convex hull formed
by its control points Di. The intersection point of the curve
D(u) and the u-axis is between the two points where the con-
vex hull intersects the axis, umin and umax. Therefore, by it-
eratively clipping the Bézier curve in the range [umin,umax]
using de Casteljau’s algorithm, it will converge to the root of
d(u) = 0. When the range does not converge past a certain
threshold, the Bézier curve is split in two, and the process is
repeated for both parts recursively. The above process, un-
like Newton’s method, does not require an initial value and
converges very quickly.

Since any polynomial can be converted into Bézier
form [Sch90], Bézier Clipping can be used as a general
solver for polynomial equations. Campagna et al. [CSS97]
pointed out a problem that roots are misdetected when the
convex hull barely intersects the axis, and showed a heuris-
tic to mitigate the problem by slightly increasing the clipping
range. Pabst et al. [PSS∗06] proposed an iterative algorithm
for Bézier Clipping that works on the limited memory avail-
able on GPUs. We propose an even more robust way to solve
the problem shown by Campagna et al., as well as a GPU-
based algorithm that runs faster than Pabst et al.’s method.

4. Algorithm

Our method only finds the isosurface closest to the view-
point. Throughout this paper, t denotes a parameter of the
viewing ray, specifying the distance from the viewpoint to
an intersection.

Figure 4 illustrates the outline of our method. Unlike the
calculation on the CPU as described in Section 3.1, it is dif-
ficult to store many ray-sphere intersections at each pixel
in the limited memory available on the GPU. On the other
hand, the isosurface can be found in the first few intervals at
some pixels, thus storing all the intersections is not always

submitted to EUROGRAPHICS 2008.

4 Kanamori, Szego and Nishita / GPU-based Fast Ray Casting for a Large Number of Metaballs

Figure 4: Outline of our method. 1) Render effective spheres, find the nearest intersection point on the viewing ray. 2) Find
the kth intersection using depth peeling (where k is the number of iterations). 3) In the interval between the (k−1)th and kth
intersection points, perform a ray-isosurface test at each pixel using Bézier Clipping. Repeat steps 2 and 3 until the isosurface
is found or no intersection is available. 4) Evaluate and shade the isosurface closest to the viewpoint at every pixel.

Figure 5: Updating the list of metaball IDs for the viewing
ray R1 in Figure 2.

necessary. We keep as small amount of information as pos-
sible for ray-isosurface tests at each pixel.

In the rest of this section, we describe how the information
for ray-isosurface tests is maintained and updated, and show
the pseudocode of our algorithm. Finally, we discuss how to
optimize depth peeling and isosurface tests.

4.1. Finding Ray-Sphere Intersections by Depth Peeling

While Nishita and Nakamae’s algorithm computes ray-
sphere intersections per pixel, we employ depth peel-
ing [Mam89,Eve02] and obtain the intersections in parallel,
from front to back. By drawing effective spheres, we store
the IDs and ray parameters into a texture. At the same time,
we look up another texture which keeps parameters at pre-
vious intersections, and discard fragments whose parameters
are less than the previous ones. We repeat this procedure and
then obtain metaball IDs and parameters at ray-sphere inter-
sections.

4.2. Extracting Metaballs for Isosurface Test

In order to obtain the metaballs required for ray-isosurface
tests as described in Section 3.1, we keep a list of metaballs

// ListBufA, ListBufB :
// two sets of textures containing t and the ID list
// TmpTex : a texture containing t and one ID
Initialize ListBufA, ListBufB and TmpTex with 0;
Render the front face of every effective sphere (step 1 in Figure 4);
Store the resulting first t and ID to ListBufA;
do

Render the front and back faces
of every effective sphere (step 2 in Figure 4);

if (t is less than ListBufA’s t)
Discard the fragment;

endif
Store the resulting t and the ID to TmpTex;
Detect the isosurface

using ListBufA and TmpTex (step 3 in Figure 4);
Update the ID list using ListBufA and TmpTex;
Store the updated ID list to ListBufB;
Swap ListBufA and ListBufB;

until (the isosurface is found or no t available);
Evaluate the isosurface using ListBufA (step 4 in Figure 4);

Figure 6: Pseudocode for our rendering process.

and incrementally update it when a metaball ID is given by
depth peeling. Our method to update the list is quite simple:
since an effective sphere intersects the viewing ray twice, it
only contributes to the isosurface between those two inter-
sections, and thus the metaball in question can be added to
the list at the first intersection point, and deleted at the sec-
ond (see Figure 5). In case that the viewing ray touches a
metaball, we can guarantee the ID to appear twice by look-
ing for intersection points twice during depth peeling.

When working on the GPU, we must make do with a fixed
sized buffer. Our method keeps this list in a set of textures,
using the GPU’s ability to render into Nbu f buffers at once,
where the maximum value of Nbu f depends on the GPU used
(4 for shader model 3.0 GPUs, and 8 for shader model 4.0).
By grouping Nbu f screen-sized floating point RGBA textures
together and using each channel to store a value, we can
treat them as one array that can store 4Nbu f floating point
values. In this array, we store the viewing ray parameter t,
the number of IDs, and the IDs themselves in the remaining

submitted to EUROGRAPHICS 2008.

Kanamori, Szego and Nishita / GPU-based Fast Ray Casting for a Large Number of Metaballs 5

4Nbu f −2 slots. In our experiments, with a value of Nbu f = 4
we could therefore save at most 14 IDs.

4.3. Summary of Basic GPU-based Rendering

Using the process described above, we can now render meta-
balls; In each step of depth peeling, we retrieve a metaball ID
and the ray-sphere intersection with each viewing ray from
front to back. We then construct an equation in Bézier form
(see Appendix A) for a ray-isosurface test, solve it using
Bézier Clipping, and update the list required for the ray-
isosurface tests. When the isosurface is found at a pixel,
we terminate the process at that pixel. Figure 6 contains
the pseudocode for the rendering process of our method as
shown in Figure 4.

5. Optimizing Depth Peeling and the Isosurface Test

In this section, we will discuss the optimization of the parts
that take up most of the rendering process, depth peeling and
the isosurface test. Our method requires rendering the effec-
tive spheres multiple times. For a large number of metaballs,
this computation becomes expensive. Therefore, we employ
a fast sphere rendering method, and try to reduce the over-
all number of spheres to be drawn. Additionally, we reduce
fragments to be processed in depth peeling by subdividing
the screen into tiles and processing each tile separately. We
also optimize Bézier Clipping, which is the most computa-
tionally expensive part of the isosurface tests.

5.1. Fast Rendering of Spheres

When rendering spheres in depth peeling, we can use poly-
gons as a possible solution. However, since a fine tessellation
is required to accurately find the intersection point on the
viewing ray, this method is not so effective, especially when
the spheres become small on the screen. In our method, we
render spheres using only their radii and their centers. First,
in the vertex shader, we specify the rectangular region that
tightly fits the perspective-projected sphere on the screen
(see Appendix B for details). Then for each fragment in
this region, we perform an intersection test for the viewing
ray and the sphere in the fragment shader, and discard the
fragment if there is no intersection. Similar methods have
been used to render perspective projected disks [BSK04] and
quadratic curved surfaces [RE05, SWBG06]. Our method is
specialized for rendering spheres, and runs much faster than
when using polygons. Note that our method only renders ei-
ther the front or the back faces of the sphere, however, when
doing depth peeling there is no need to render both: just the
one farther away from the previous intersection point is suf-
ficient.

5.2. Metaball Culling via Occlusion Queries

Next, we will describe how to reduce the number of rendered
metaballs. We refer to the sphere making up the isosurface

Figure 7: Culling metaballs using kernel spheres. The meta-
balls in the gray region are hidden by kernel spheres.

(as introduced in the Single Case of Section 3.1) as a "kernel
sphere". We can perform culling based on the premise that
metaballs hidden from the viewpoint by kernel spheres do
not contribute to the closest isosurface (see Figure 7). To
check for this, the GPU’s occlusion query functionality can
be used. First we render the kernel spheres and save the ray
parameters to a texture. Next, we disable writes to the depth
buffer, and render the effective spheres, using the occlusion
query to determine which effective spheres were drawn. By
culling the effective spheres that were not rendered in the
above test, we can reduce the number of effective spheres
to be rendered during depth peeling. This type of culling is
especially effective when metaballs are in a dense group, and
can reduce the number of metaballs to be rendered to 10-
20% in some cases. Furthermore, by looking up the texture
storing the ray parameters at the intersections with the kernel
spheres, we can obtain the ray-isosurface intersections in the
Single Case.

5.3. Optimization with Screen Tiling

While depth peeling computes intersections of viewing rays
and spheres in parallel, the number of intersections to be
computed varies by each viewing ray. As Bernadon et
al. [BPCS06] did for volume rendering, we therefore sub-
divide the screen into uniform tiles and perform depth peel-
ing for each tile until depth peeling terminates (which can be
automatically detected using occlusion query [Eve02]). We
calculate which spheres intersect with each tile, and register
the intersecting spheres to be rendered for every tile. This
computation is done on the CPU in our prototype system.
Regarding the size of tiles, too small tiles cause many dupli-
cate registrations of spheres among tiles, while too large tiles
cannot handle different numbers of intersections efficiently.
In all of our experiments, an 8×8 grid of tiles for 640×480
and a 16×16 grid for 1024×768 proved to be good choices.

5.4. Recursive Short-Stack Bézier Clipping

We also speed up Bézier Clipping. For GPU-based rendering
of NURBS, Pabst et al. [PSS∗06] used an iterative version of

submitted to EUROGRAPHICS 2008.

6 Kanamori, Szego and Nishita / GPU-based Fast Ray Casting for a Large Number of Metaballs

Table 1: Comparison of total rendering times (in millisec-
onds) between the CPU and GPU versions.

resolution metaballs CPU GPU speedup

640x480

10,000 589.5 117.1 5.0
50,000 1014.8 191.6 5.3
100,000 1469.5 299.4 4.9
200,000 2265.4 523.6 4.3

1024x768

10,000 1455.8 230.4 6.3
50,000 2495.2 366.3 6.8
100,000 3593.9 571.4 6.3
200,000 5491.3 980.4 5.6

Bézier Clipping, which works with relatively small number
of registers, at the cost of more iterations and slower con-
vergence compared with the recursive algorithm by Nishita
et al. [NSK90]. We use a recursive algorithm with a fixed
size stack on the GPU. We try to keep the stack as small
as possible, due to the fact that using too many registers re-
duces the parallel performance of recent GPUs [NVI]. Be-
cause of this, we only push Bézier control points onto the
stack after making sure that their convex hull intersects the
axis. In our algorithm, we first check how many times the
Bézier control points’ sign changes (see Figure 3), similar to
the original version [NSK90]. If the sign does not change at
all, the hull does not intersect the axis, thus we do not have
to solve anything. If it changes more than once, there might
be two or more solutions. In this case, since we expect the
region not to get narrower later on during the clipping, we
split the control polygon into two beforehand, while the orig-
inal version does that only after the region is actually found
not to get narrower. This modification adds almost no over-
head, and robustly addresses the flaw pointed out by Cam-
pagna et al. [CSS97]; even when the convex hull barely in-
tersects the axis, the control points’ sign changes more than
twice, thus the control polygon gets split in two and pro-
cessed in more detail. Finally, only when the sign changes
exactly once do we perform the relatively expensive inter-
section test between the convex hull and the axis. By using
the above improvements, and setting the convergence thresh-
old to 10e−4, a stack size of 3 proved to be sufficient. Pabst
et al.’s method used 16.4 iterations on average and at most
29, while our method had an average of 2.3 iterations with a
maximum of 8. We achieved an approximately double over-
all speedup of Bézier Clipping.

6. Results

Our implementation was written in C++, using OpenGL
and Cg. We ran our tests on a PC with an Intel Core 2
Quad 2.66 GHz CPU and an NVIDIA GeForce 8800 Ultra
graphics card. We used Wyvill et al.’s degree-six polyno-
mial [WMW86] for metaballs in all of our experiments.

To evaluate the accuracy of our method, we used an exam-

Figure 8: Graphs of the computational times for the CPU
and GPU versions when rendering the scene in Figure 1.

ple of randomly arranged metaballs with random effective
radii (Figure 1), and compared the results calculated on the
GPU to a reference image computed on the CPU. The rel-
ative RMS error of the ray parameters at ray-isosurface in-
tersections was 0.7%. The error mainly results from a small
number of dots at the edges of isosurfaces.

While our GPU-based ray caster ran more than 75 times
faster compared to a naive implemetation of Nishita and
Nakamae [NN94] at 640× 480 since they did not use any
acceration data structure in their work, we further com-
pared our method’s performance with an optimized CPU-
based ray caster. In this CPU version, Nishita and Naka-
mae’s method [NN94] was used for isosurface extraction,
while ray traversal was optimized using bounding volume
hierarchies (BVH) built by the split-in-the-middle strategy
(see [WMG∗07] for details). Ray-sphere intersections were
computed four at a time in parallel using SIMD, with one
ray for each pixel, and to take advantage of multiple cores,
this process was run in four threads. The Intel compiler was

submitted to EUROGRAPHICS 2008.

Kanamori, Szego and Nishita / GPU-based Fast Ray Casting for a Large Number of Metaballs 7

(a) Overlapping intersections (b) Dense group of metaballs

(c) The viewing ray crossing too many metaballs

Figure 9: Special cases.

used with optimization options turned on. Packet-based ray
traversal [WBS07] was not implemented. Table 1 and Fig-
ure 8 show the comparison results without shading calcula-
tions. Our GPU-based method had a 4-7x performance ad-
vantage compared to this CPU version, while further opti-
mizations to the CPU algorithm might tighten this gap, es-
pecially for ray traversal which has been actively studied in
the ray tracing community. However, optimizations for ray-
isosurface tests, which account for about half the computa-
tional time as shown in Figure 8, are not trivial. Moreover,
the GPU version still has the advantage of being much easier
to integrate with existing polygonal scenes.

As far as we know, there has been no ray tracing method
that aims to handle a large number of moving metaballs, thus
it is hard to make appropriate comparisons to other existing
methods. Loop and Blinn [LB06] could render two meta-
balls on a GeForce 7800 GTX in 640×480 at close to 300
fps. Our method reaches about 150 fps. Our method seems to
be much slower considering the difference in the hardware’s
abilities, however, as we previously mentioned, their method
has difficulties handling many moving metaballs efficiently.
Knoll et al. [KHH∗07], using advanced CPU optimizations,
showed 5 metaballs on an Intel Core Duo 2.16 GHz at 5122

even close up at about 14 fps on the video available on their
website. Our method can render a similar scene (with meta-
balls filling about 80% of the screen area) at more than 50
fps, making it 3.5 times faster. A publicly available demo of
GPU-based polygonization [Ura06] renders 25 metaballs at
25 fps, however the surface is not so smooth. Our method
can handle even small particles smoothly at almost the same
speed at 640×480.

Figure 10 shows an example of using our method to vi-
sualize the results of a particle-based fluid simulation. Note
that even very small particles are rendered smoothly. Fig-
ure 11 shows the visualization of a molecular dynamics sim-
ulation. Compared to simply drawing spheres, using meta-
balls gives a higher quality picture. Figure 12 shows an ex-
ample of using our method to render a particle-system-based
fountain.

7. Discussion

In this section, we discuss the special cases for ray-
isosurface tests in our algorithm as well as further optimiza-
tions.

Special Cases. We will address a few problematic situations
that may arise with our algorithm (Figure 9). When several
effective spheres intersect the viewing ray at the same point
(Figure 9(a)), by just comparing the ray parameters, only one
metaball ID is returned. In this case, we would have to check
if the ID is already stored in the list or not, and discard the
fragments containing that ID if it is, however, this would
drastically increase the cost of depth peeling. Fortunately,
in our experiments using 32-bit floating point computations,
omitting this check did not lead to any visible artifacts.

For very dense groups of metaballs (Figure 9(b)), the
number of items in the ID list might exceed the upper limit
of K = 4Nbu f − 2, in which case the intersection test can-
not be performed, leading to holes. When this happens, we
instead treat the ray-sphere intersection as a ray-isosurface
intersection. Using K = 14 in our experiments, we did not
see any visual artifacts.

There are cases when the viewing ray only intersects the
isosurface after crossing a number of other metaballs (Fig-
ure 9(c)). As long as we do not exceed K, the upper limit for
the ID list’s capacity, we can keep the isosurface visible by
just repeating depth peeling until it terminates.

Further Optimizations. Depth peeling and isosurface test
make up the major part of our method. For the latter, we
tried to replace the expensive computation of the Bézier co-
efficients with precomputation and runtime texture fetches.
However, since the texture accesses had little coherence,
it actually hurt the performance. As a further possibil-
ity for a speedup, future hardware support for depth peel-
ing [BCL∗07] would be very helpful.

8. Conclusion and Future Work

We have achieved fast ray casting of metaballs on the GPU.
One challenge of using the GPU is that we have to extract the
metaballs necessary for isosurface tests with limited mem-
ory. Our algorithm efficiently finds the metaballs contribut-
ing to the isosurface on the viewing ray by keeping metaball
ID lists and updating them after each pass of depth peeling.
For faster rendering, we have proposed the following opti-
mizations:

1. fast rendering of spheres via point sprites (Section 5.1),
2. metaball culling via occlusion queries (Section 5.2),
3. tile-based depth peeling (Section 5.3), and
4. recursive short-stack Bézier Clipping (Section 5.4).

We have demonstrated that our method is useful for preview-
ing the results of particle-based simulations such as fluid dy-
namics and molecular dynamics.

submitted to EUROGRAPHICS 2008.

8 Kanamori, Szego and Nishita / GPU-based Fast Ray Casting for a Large Number of Metaballs

Figure 10: Visualization of a particle-based fluid simulation with about 120K metaballs. The scene on the left (4.7 fps) is closed
up and displayed on the right (4.4 fps). Even small splashes can be seen clearly. The front face of the tank was removed to show
the water inside.

Figure 11: Visualization of a molecular dynamics simulation with 2,878 metaballs. When simply drawing a sphere for each
atom (left, 3971.9 fps), the bonds between the atoms are hard to see. When using our method they become more clear (center,
22.9 fps). Applying Luft et al.’s image enhancement method [LCD06] increases the feeling of depth perception (right, 22.8 fps).

For future work, we would like to use the GPU to achieve
further speed gains. In order to render objects exhibiting
complex refraction and transparency effects using image-
based approaches [Wym05], we would also like to find an
efficient way to calculate not only the isosurface closest to
the viewpoint, but also other isosurfaces further along the
viewing ray.

Acknowledgements

Our special thanks go to Yonghao Yue for implementing an
optimized CPU-based ray caster and Kenichi Yoshida for
fruitful discussions. We would also like to thank Tsuneya
Kurihara and Takashi Imagire for proofreading the early ver-
sion of this paper, Prometech Software Inc. and Protein Data
Bank for providing the simulation data of fluid dynamics
and molecular dynamics, respectively. Finally, we are grate-
ful to the anonymous reviewers for their helpful suggestions,

and the members of our laboratory for their great encourage-
ment.

References

[BCL∗07] BAVOIL L., CALLAHAN S. P., LEFOHN A., JO

A. L. D. C., SILVA C. T.: Multi-fragment effects on the
GPU using the k-buffer. In I3D ’07: Proceedings of the
2007 symposium on Interactive 3D graphics and games
(2007), pp. 97–104.

[Bli82] BLINN J. F.: A generalization of algebraic surface
drawing. ACM Trans. Graph. 1, 3 (1982), 235–256.

[BPCS06] BERNADON F. F., PAGOT C. A., COMBA J.
L. D., SILVA C. T.: GPU-based tiled ray casting using
depth peeling. journal of graphics tools 11, 4 (2006), 1–
16.

[BSK04] BOTSCH M., SPERNAT M., KOBBELT L.:

submitted to EUROGRAPHICS 2008.

Kanamori, Szego and Nishita / GPU-based Fast Ray Casting for a Large Number of Metaballs 9

Figure 12: Screenshots from a particle-system-based animation of a fountain with about 100K metaballs. The rendering speeds
were 6.2 fps for the upper-left and 2.3 fps for the lower-right.

Phong splatting. In Eurographics Symposium on Point-
Based Graphics 2004 (2004), pp. 25–32.

[CSS97] CAMPAGNA S., SLUSALLEK P., , SEIDEL H.-P.:
Ray tracing of spline surfaces: Bézier clipping, chebyshev
boxing, and bounding volume hierarchy - a critical com-
parison with new results. The Visual Computer 13 (1997),
265–282.

[Eve02] EVERITT C.: Interactive Order-Independent
Transparency. Tech. rep., NVIDIA Corporation, 2002.
http://developer.nvidia.com.

[GG07] GUENNEBAUD G., GROSS M.: Algebraic point
set surfaces. In Proc. of SIGGRAPH ’07 (2007), p. 23.

[IYDN06] IWASAKI K., YOSHIMOTO F., DOBASHI Y.,
NISHITA T.: Real-time rendering of point-based water
surfaces. In Proc. of Computer Graphics International
2006 (2006), pp. 102–114.

[KHH∗07] KNOLL A., HIJAZI Y., HANSEN C. D.,
WALD I., HAGEN H.: Interactive ray tracing of arbitrary
implicit functions. In Proceedings of the 2007 Eurograph-
ics/IEEE Symposium on Interactive Ray Tracing (2007).

[KOKK06] KANAI T., OHTAKE Y., KAWATA H., KASE

K.: GPU-based rendering of sparse low-degree implicit
surfaces. In Proc. GRAPHITE ’06 (2006), pp. 165–171.

[LB06] LOOP C., BLINN J.: Real-time GPU rendering
of piecewise algebraic surfaces. In Proc. SIGGRAPH ’06
(2006), pp. 664–670.

[LC87] LORENSEN W. E., CLINE H. E.: Marching cubes:

A high resolution 3D surface construction algorithm. In
Proc. SIGGRAPH ’87 (1987), pp. 163–169.

[LCD06] LUFT T., COLDITZ C., DEUSSEN O.: Image
enhancement by unsharp masking the depth buffer. ACM
Transactions on Graphics 25, 3 (jul 2006), 1206–1213.

[Mam89] MAMMEN A.: Transparency and antialiasing al-
gorithms implemented with the virtual pixel maps tech-
nique. IEEE Computer Graphics and Applications 9, 4
(1989), 43–55.

[MI87] MURAKAMI S., ICHIHARA H.: On a 3D display
method by metaball technique. Journal of papers given by
at the Electronics Communication (in Japanese) J70-D, 8
(1987), 1607–1615.

[NHK∗85] NISHIMURA H., HIRAI M., KAWAI T., SHI-
RAKAWA I., OMURA K.: Object modeling by distribution
function and a method of image generation. Journal of
papers given by at the Electronics Communication Con-
ference (in Japanese) J68-D, 4 (1985), 718–725.

[NN94] NISHITA T., NAKAMAE E.: A method for dis-
playing metaballs by using Bézier Clipping. Computer
Graphics Forum 13, 3 (1994), 271–280.

[NSK90] NISHITA T., SEDERBERG T. W., KAKIMOTO

M.: Ray tracing trimmed rational surface patches. In
Proc. SIGGRAPH ’90 (1990), pp. 337–345.

[NVI] NVIDIA: The CUDA Homepage.
http://developer.nvidia.com/cuda.

[PSS∗06] PABST H.-F., SPRINGER J. P., SCHOLLMEYER

A., LENHARDT R., LESSIG C., FROEHLICH B.: Ray

submitted to EUROGRAPHICS 2008.

http://developer.nvidia.com
http://developer.nvidia.com/cuda

10 Kanamori, Szego and Nishita / GPU-based Fast Ray Casting for a Large Number of Metaballs

casting of trimmed NURBS surfaces on the GPU. In
Proc. of IEEE Symposium on Interactive Ray Tracing
2006 (2006), pp. 151–160.

[RE05] REINA G., ERTL T.: Hardware-accelerated glyphs
for mono- and dipoles in molecular dynamics visualiza-
tion. In Proceedings of EUROGRAPHICS - IEEE VGTC
Symposium on Visualization 2005 (2005), pp. 177–182.

[Sch90] SCHNEIDER P. J.: A Bézier curve-based root-
finder. Graphics gems (1990), 408–415.

[SGS06] STOLL C., GUMHOLD S., SEIDEL H.-P.: Incre-
mental raycasting of piecewise quadratic surfaces on the
GPU. In Proc. of IEEE Symposium on Interactive Ray-
tracing (2006), pp. 141–150.

[She99] SHERSTYUK A.: Fast ray tracing of implicit sur-
faces. Computer Graphics Forum 18, 2 (1999), 139–147.

[SWBG06] SIGG C., WEYRICH T., BOTSCH M., GROSS

M.: GPU-based ray-casting of quadratic surfaces. In
Eurographics Symposium on Point-Based Graphics 2006
(2006), pp. 59–65.

[Ura06] URALSKY Y.: DX10: Practical Metaballs and
Implicit Surfaces. Tech. rep., NVIDIA Corporation, 2006.
http://developer.nvidia.com.

[vKvdBT07] VAN KOOTEN K., VAN DEN BERGEN G.,
TELEA A.: Point-based visualization of metaballs on a
GPU. GPU Gems 3, Chapter 7 (2007), 123–148.

[WBS07] WALD I., BOULOS S., SHIRLEY P.: Ray Trac-
ing Deformable Scenes using Dynamic Bounding Vol-
ume Hierarchies. ACM Transactions on Graphics 26, 1
(2007).

[WMG∗07] WALD I., MARK W. R., GÜNTHER J., BOU-
LOS S., IZE T., HUNT W., PARKER S. G., SHIRLEY P.:
State of the Art in Ray Tracing Animated Scenes. In Eu-
rographics 2007 State of the Art Reports (2007).

[WMW86] WYVILL B., MCPHEETERS C., WYVILL G.:
Data structure for soft objects. The Visual Computer 2
(1986), 227–234.

[WT90] WYVILL B., TROTMAN A.: Ray-tracing soft ob-
jects. In CG International ’90 (1990), pp. 439–475.

[Wym05] WYMAN C.: An approximate image-space ap-
proach for interactive refraction. ACM Transactions on
Graphics 24, 3 (aug 2005), 1050–1053.

[YK04] YASUI Y., KANAI T.: Surface quality assessment
of subdivision surfaces on programmable graphics hard-
ware. In SMI ’04: Proceedings of the Shape Modeling
International 2004 (SMI’04) (2004), pp. 129–138.

Appendix A: The Density Functions of Various Degrees in
Bézier Form

In Nishita et al.’s method [NN94], we need to construct
equations in Bézier form for ray-isosurface tests. Here we

first describe how to compute the coefficients of the equa-
tions for one metaball, then for N metaballs that intersect
with the viewing ray in a given interval.

Consider the effective sphere of metaball i that intersects
the viewing ray. Let s ∈ [0,1] be a parameter within the in-
tersected interval. For the degree-M density function fi(s) in
Bézier form, the coefficients {di

m} at the interval are:

for the quartic polynomial,

di
0 = di

1 = di
3 = di

4 = 0, di
2 =

8
3

a2
i , (3)

and for the degree-six polynomial,

di
0 = di

1 = di
5 = di

6 = 0, (4)

di
2 = di

4 =
16
27

a2
i , di

3 =
8(8ai +5)a2

i

45
, (5)

where ai = Di
Ri

, Di is the determinant of the quadratic equa-
tion for the ray-sphere intersection test, and Ri is the effec-
tive radius of metaball i.

For N metaballs that intersect with the viewing ray in a
given interval, the coefficients of the density function for
metaball i are computed by clipping the Bézier curve de-
fined by {di

m} using de Casteljau’s algorithm. By putting the
density functions in Bézier form into Equation 1, we obtain
the equation for the ray-isosurface test at that interval.

Appendix B: Finding a Perspective Projected Sphere’s
On-screen Region

Consider a sphere i with radius Ri centered at (xi,yi,zi) in
the viewing coordinate system. The bounding rectangle for
the sphere on the screen can be calculated with the following
formula:

x =
zscreen(xizi ±Ri

√
x2

i + z2
i −R2

i)

z2
i −R2

i

, (6)

y =
zscreen(yizi ±Ri

√
y2

i + z2
i −R2

i)

z2
i −R2

i

, (7)

where zscreen is the distance from the viewpoint to the screen.
Using point sprites, we render squares that cover this region.

submitted to EUROGRAPHICS 2008.

http://developer.nvidia.com

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

