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3D Terrain Estimation from a Single Landscape Image

Haruka Takahashi · Yoshihiro Kanamori · Yuki Endo

Abstract This paper presents the first technique to

estimate a 3D terrain model from a single landscape

image. Although monocular depth estimation also of-

fers single-image 3D reconstruction, it assigns depth

only to pixels visible in the input image, resulting in

an incomplete 3D terrain output. Our method gener-

ates a complete 3D terrain model as a textured height

map via a three-stage framework using deep neural net-

works. First, to exploit the performance of pixel-aligned

estimation, we estimate terrain’s per-pixel depth and

color free from shadows or lights in the perspective

view. Second, we triangulate the RGB-D data gener-

ated in the first stage and rasterize the triangular mesh

from the top view to obtain an incomplete textured

height map. Finally, we inpaint the depth and color

in the missing regions. Because there are many possi-

ble ways to complete the missing regions, we synthesize
diverse shapes and textures during inpainting using a

variational autoencoder. Qualitative and quantitative

experiments reveal that our method outperforms exist-

ing methods applying a direct perspective-to-top view

transform as image-to-image translation.
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1 Introduction

3D terrain models are widely used in film production

and video games. Such terrain models are typically cre-

ated by professional artists, but what if terrain models

can be automatically generated from single landscape

photos? We can enjoy 3D views of sightseeing spots in

VR/AR applications. Single-view 3D reconstruction is

possible with existing techniques of monocular depth

estimation. However, they can only estimate the depth

of the visible region in the input image, and hidden or

occluded parts are left missing, resulting in an incom-

plete 3D model.

In this paper, we propose the first technique to esti-

mate a complete 3D terrain model as a textured height

map from a single landscape image. We face the follow-

ing two challenges. First, we have to reconstruct the

shape and texture of the regions that are occluded in

the input image. Second, we should remove the shadows

and shading from the 3D model’s texture.

We overcome these challenges with a three-stage

framework using convolutional neural networks (CNNs)

via supervised learning. 1) We first employ monocu-

lar depth and texture estimation from the input image

using CNNs, to exploit the advantage of pixel-aligned

estimation. The texture is inferred such that our GAN-

based approach removes the shadows and shading in the

input image. The resulting RGB-D data is in the per-

spective view with missing regions, and thus we trans-

form it to the top view, followed by inpainting. Namely,

2) we triangulate the RGB-D data and rasterize the tri-

angular mesh in the top view via orthogonal projection

to obtain incomplete height/texture maps. 3) We then

inpaint the height and texture maps of the incomplete

model using another CNN. Note that there are many

possible ways to complete the missing regions. We thus
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Fig. 1 Overview of our three-stage framework for single-image 3D terrain estimation. Stage 1 estimates the depth/color maps
for visible pixels in the input image. Stage 2 then constructs a triangular mesh and rasterizes it in the top view via orthogonal
projection. Stage 3 finally completes the missing regions to output complete height/texture maps.

synthesize diverse shapes and textures during inpaint-

ing using a variational autoencoder (VAE) [6]. For our

supervised training, there are no public datasets of tex-

tured height maps representing terrains, to the best of

our knowledge. We thus create a new dataset with mea-

sured height maps and synthetic textures.

To verify the effectiveness of our three-stage estima-

tion, we compare our method qualitatively and quanti-

tatively with existing methods for directly transforming

an input image to another view and for image-to-image

translation. We demonstrate that our method can esti-

mate more plausible terrain 3D models.

2 Related Work

2.1 Terrain modeling and editing

Methods for modeling and editing 3D terrain models

have a long history of research. Procedural methods [8–

10] have been commonly used to form terrain geome-

try due to its fractal nature. They are advantageous

in that they can define terrain geometry by simple re-

cursive rules to randomly displace the terrain surface

at relatively low computational cost. Simulation-based

methods [7,10,11,16] can generate physically-plausible

terrain models by simulating, e.g., the erosive effects of

water flow. Sketch-based methods allow users to specify

terrain geometry directly and intuitively with sketches

from, e.g., the top view [24] or perspective view [18].

Our method differs from these methods in that our in-

put is a single landscape image.

2.2 Monocular depth estimation

Monocular depth estimation has been actively studied

in computer vision and can be applied to infer land-

scape geometry from a single image. Recent methods

employ deep neural networks to achieve incredible per-

formance [2,4,13,14,19,3,21]. However, these methods

only handle visible regions in the input image and do

not consider hidden or occluded parts of the terrain

geometry.

2.3 View translation

Our method can be regarded as a multi-step view trans-
lation from the input view to another, for which there

are several prior studies. For example, GAN-based meth-

ods [15,17] can directly translate aerial views to near-

ground perspective views (or vice versa), which can

be viewed as an extension of image-to-image transla-

tion. While they originally target RGB images as in-

put, we can extend them to handle RGB-D data. How-

ever, view-transformed outputs tend to be inaccurate

because they do not explicitly distinguish between vis-

ible and non-visible regions in the input image, unlike

ours. See Section 4 for a comparison.

2.4 Other methods for terrain using deep learning

Besides the above-mentioned methods, recent techniques

for targetting 3D terrain adopt deep learning. For ex-

ample, there are methods for real-time terrain modeling

from top-view sketches [5] and terrain super-resolution [1,

23]. To the best of our knowledge, there is no other
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method for estimating a 3D terrain model from a single

landscape image like ours.

3 Methodology

3.1 Overview

Figure 1 illustrates the overview of our three-stage frame-

work to obtain a textured height map from the input

landscape image. Stage 1 estimates the depth and color

of the visible regions in the input image using respective

networks. For the color estimation network, we employ

GAN to remove shadows and shading due to the sun-

light. We refer to the shadow- and shading-free color im-

age extracted from the input image as a “color map.”

The resultant RGB-D map (i.e., the color and depth

maps) lies in the same perspective view as the input im-

age. Stage 2 triangulates the RGB-D map and rasterizes

the triangular mesh from the top view via orthogonal

projection to obtain incomplete height/texture maps.

Finally, Stage 3 completes the missing regions of the

rasterized depth and color maps simultaneously using

another network. Because there are many possibilities

for the reconstruction of the missing regions, we inte-

grate a VAE to generate various shapes and textures for

the missing regions. We train each network separately

in a supervised manner.

We create a synthetic dataset for supervised learn-

ing. To simplify the problem, we restrict our target

scenes to sunny landscapes containing mountains with-

out water surfaces such as rivers and lakes. We also

create binary masks to exclude sky regions for the train-

ing of the depth and color estimation in Stage 1. Binary

masks for the test phase are created manually or using

a commercial service1. Also, for simplification, we as-

sume a calibrated camera for preparing both training

and test data. We elaborate the dataset in Section 3.6.

Hereafter, we explain the components of our three-

stage framework.

3.2 Stage 1: Depth estimation

While we can use any network architecture for monoc-

ular depth estimation in the first stage, we adopt one

of the state-of-the-art architectures, SARPN [3]. It ac-

counts for multi-scale feature information for handling

the global scene structure with the low-resolution depth

map and the detailed local shapes with the high-resolution

depth map.

1 https://remove.bg/

Estimated
depth & color maps Input perspective view

Entire
terrain

3D
Mesh

Top view

Incomplete
height & texture maps

Lo
w

H
ig

h

Tr
ia

ng
ul

at
io

n

O
rth

og
on

al
pr

oj
ec

tio
n

Fig. 2 Triangulation and rasterization for obtaining incom-
plete height and texture maps. We construct a tringular mesh
from the estimated depth and color maps, and rasterize it
from the top view via orthogonal projection.

We change the loss function of SARPN to improve

the accuracy. Originally, SARPN uses the following loss

function for training:

L = Ldepth + Lgrad + Lnormal, (1)

where Ldepth, Lgrad, and Lnormal are loss functions

for the inferred depth map, its gradient, and normal

map, respectively. SARPN was proposed to infer in-

door depth, and we found that the loss function of

Eq. (1) is not suited well for landscape depth, where

the depth range in our landscape dataset (from 100 to

4,500 meters) is much more significant than that of in-

door scenes (from 0 to 10 meters). Specifically, Ldepth is

sensitive to outliers whose depth values are significantly

large. We thus replace Ldepth with the outlier-tolerant

loss Lssitrim, used by Ranftl et al. [14]. Loss function

Lssitrim is defined as follows. First, with pixel i’s depth

zi in estimated depth map Z, function q is defined as

follows:

q(zi, Z) =
zi −median(Z)

1
N

∑N
i=1 |zi −median(Z)|

, (2)

where N is the number of pixels in Z and median(Z)

yields the median value in Z. With function q, we de-

fine:

Lssitrim =
1

2N

∑
m∈U

∣∣∣q(zm, Z)− q(ẑm, Ẑ)
∣∣∣ , (3)

where ˆ denotes the corresponding ground truth, and

U is a subset of pixels obtained by removing the top

20% of erroneous pixels. We also omit Lnormal because

it deteriorated the accuracy. In summary, we use the

following loss function to train our depth estimation

network:

L = Lssitrim + Lgrad. (4)

See Section 4.6 for the ablation study on loss functions.

Note that, as explained in Section 3.1, sky regions are

excluded in the loss function using binary masks.
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Fig. 3 Training overview for our height/texture completion network. Based on the network architecture of pix2pixHD++ [12],
we integrate a VAE to diversify the completed height/texture of missing regions and extend to a multi-task network with three
decoders for high-/low-frequency height and texture maps. ⊕ denotes channel-wise concatenation.

3.3 Stage 1: Color estimation

To estimate the color map from the input image, we

adopt the network architecture of SPADE [12]. SPADE
was originally proposed for semantic image synthesis,

specialized image-to-image translation from a semantic

mask to a photo-realistic image. The SPADE architec-

ture injects the spatial information specified by the se-

mantic input mask repeatedly at multi-scale. We adopt

this architecture because we expect it as effective in our

image-to-image translation based on conditional GAN.

For training, we used the same loss functions as

SPADE’s original setting; adversarial loss LGAN , fea-

ture matching loss LFM , and perceptual loss Lvgg. Sim-

ilar to depth estimation in Stage 1, we exclude sky re-

gions in the input image from the loss calculation.

3.4 Stage 2: Rasterizing imcomplete RGB-D map

We transform the RGB-D map (i.e., color and depth

maps) to a triangular mesh and rasterize it from the

top view via orthogonal projection to obtain an incom-

plete textured height map (Fig. 2). For triangulation,

we regard each pixel in the RGB-D map as a colored

vertex and connect adjacent vertices2 while omitting

elongated triangles having large depth differences with

a threshold of 100.

For rasterization, we require camera parameters of

the input perspective view. The intrinsic and extrinsic

camera parameters for training are provided from our

dataset (Section 3.6). In the test phase, we assume that

the intrinsic parameters are the same as those of our

dataset, and, for the extrinsic parameters, the camera

locates at the height of 1,000 meters, looking horizon-

2 Specifically, we connect each pixel (i.e., a colored vertex)
with its lower and right neighbors to define a triangle.

tally. We implemented rasterization with OpenGL and

set the output resolution as 1024× 1024.

3.5 Stage 3: Completion of missing regions

When completing the incomplete textured height map,

we account for the following two points: 1) There are

many possibilities for the completed geometry/texture

of the missing parts, and 2) the geometry and texture

should correlate with each other; for example, a grass

texture pattern should not appear on steep mountain

slopes. For 1), we integrate a VAE to diversify the com-

pleted regions. For 2), we learn to complete geometry

and texture simultaneously using a multi-task network.

Furthermore, we separately learn the high- and low-

frequency components of height maps to capture both

global structures and local details accurately.

Fig. 3 illustrates the training procedure of our com-

pletion network. During training, the VAE’s encoder

(lower-left green dashed box in Fig. 3) encodes the con-

catenated ground-truth (GT) height/texture maps and

yields a feature vector of channel size (H×W ), whereH

and W are the height and width of GT height/texture

maps. We obtain a 1-channel feature map of size H×W

by reshaping the (H×W )-channel vector. We then con-

catenate the resultant feature map and the incomplete

height/texture maps channel-wise. From the concate-

nated input, our multi-task network outputs high-/low-

frequency height and texture maps simultaneously. These

three outputs are then fed to the respective discrimina-

tors. In the test phase, the VAE’s encoder part is re-

placed by random sampling from the standard normal

distribution.

For the network architecture, we base the architec-

ture of pix2pixHD++ [12] (top red dashed box in Fig. 3)

because it supports high-resolution outputs, and mod-

ify it to support a VAE and multi-task outputs with
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three decoders. In the decoder, the transposed convolu-

tion yields grid-like artifacts, so we replace it with up-
sampling followed by convolution. Regarding the loss

functions, we used the same loss functions as those for

the color estimation network (Section 3.3) and a KL-

Divergence loss for the VAE.

3.6 Terrain landscape dataset

We created our dataset with measured geometry and

synthetic texture using Blender. For the geometry, we

used measured terrain height maps in SRTM 3. For the

texture, we generated ten different materials using a

Blender add-on4 and randomly assigned them. We first

randomly cut out the textured terrains into 7,000-meter

squares and, for each squared terrain, set up 36 perspec-

tive cameras looking at the center, equiangularly on a

circumference with a radius of about 2,500 meters. The

cameras’ height is set to 75% of the maximum terrain

height5. The cameras’ pitch and roll angles were ran-

domly set in the ranges of [-13, 0] (i.e., from looking-

down to horizontal angles) and [-3, 3] degrees, respec-

tively. The cameras’ horizontal field-of-view angle is 60

degrees. For each camera, we rendered a shaded color

image for input, GT color/depth maps, and a binary

mask to exclude the sky, setting the maximum depth

limit as 5,000 meters. We also extracted corresponding

GT height and texture maps of 5,000-meter squares in

front of each camera. We discard the data if the visible

terrain area is less than 20% of the square area. For

lighting, we set a sunlight and an environment light

randomly selected from five 8k HDRIs obtained from

Poly Haven6.

Fig. 4 shows examples in our dataset. Our dataset

has 11,440 views in total. The numbers for training,

validation, and test samples are 10,000, 720, and 720,

respectively. The image resolutions of depth/color maps

and GT height/texture maps are 640× 480 and 1024×
1024, respectively.

4 Experiments

4.1 Implementation details

We used Python and PyTorch to implement our method.

For training, we assigned each network with one GPU

3 http://viewfinderpanoramas.org/dem3.html
4 https://www.blendermarket.com/products/

true-terrain-
5 In case the cameras are buried in the ground, they are

moved to the ground surface plus a 25-meter offset.
6 https://polyhaven.com/
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Fig. 4 Sample images from our terrain landscape datasets.
From top to bottom, the terrain landscape images, depth
maps, color maps, height maps, and textures are shown.

from our heterogeneous GPU clusters, accounting for

required GPU memories. Namely, we used Quadro RTX

6000 for the depth/color estimation networks and Quadro

RTX 8000 for the completion network. We determined

the training epochs using the validation data as 24 for

the depth estimation network and 50 for the other net-

works. The training took about one day for each of

the depth/color estimation networks and about two to

three weeks for the completion network. For optimiza-

tion, we used Adam for the training of all networks. For

the depth estimation network, we set the momentum

term as β = (0.5, 0.999), the learning rate as 0.0001,

the decay term as 0.00001. For the other networks,

the momentum term was β = (0, 0.999), the respec-

tive learning rates of the generators and discriminators

were 0.0001 and 0.0004, and the decay term was 0. We

scheduled the learning rate adjustment as follows. For

the depth estimation network, we decayed the learning

rate by 10% every 5 epochs. For the other networks, we

decayed the learning rate linearly from 25 and termi-

nated at 50 epochs with zero learning rate. The batch

sizes were 4 for the depth/color estimation CNNs and

1 for the completion network.
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4.2 Experimental settings

Evaluation metrics. We used the following metrics for

quantitative evaluation. For depth and height maps, we
used absolute and relative errors. We also calculated the

percentage of pixels for which the ratio δ between the

estimated and GT values is less than a threshold. As

thresholds, we used {1.25, 1.252, 1.253}, following exist-

ing depth estimation studies [4,13]. For evaluating tex-

tures, we used FID to measure the GAN output quality

and LPIPS [22] as a perceptual evaluation measure.

Compared methods. We compared our method with Se-

lectionGAN [17] and pix2pixHD++ [12]. SelectionGAN

mutually translates aerial photographs and street views

with semantic masks. We trained SelectionGAN and

pix2pixHD++ from scratch using our dataset because

their original tasks are different from ours. For each

of SelectionGAN and pix2pixHD++, which originally

output RGB images, we trained two respective mod-

els to generate height and texture maps directly from

input images. We replaced the transposed convolution,

as done in our network. Note that SelectionGAN re-

quires a semantic mask as input corresponding to the

output layout, for which we instead fed a three-channel

noise image because our dataset does not contain such

data. For pix2pixHD++, we resized the input images

to 1024× 1024, which is the input size of the network.

Both SelectionGAN and pix2pixHD++ were trained

using Adam up to 50 epochs with the same learning

rate decay as our completion network. Adam’s hyper-

parameters for pix2pixHD++ are the same as our com-

pletion network whereas those for SelectionGAN are

the default values used in the original paper [17]. Our
completion network yields multimodal outputs, so we

generated 10 output candidates with random vectors

for each input and selected the output with the best

score7. We separately validated the faithfulness of 1)

entire terrain outputs and 2) regions visible from the

input viewpoints. For 2), we masked out the invisible
regions from the output height and texture maps for

calculating FID and LPIPS.

4.3 Qualitative comparisons

Fig. 5 shows a qualitative comparison of estimated ter-

rains rendered from input views (upper rows) and over-

all views (lower rows). The overall views’ orange points

and dashed lines indicate the viewpoints and the field of

7 We ranked 10 output candidates for each metric, and
counted the number of “being ranked as the top” for each can-
didate. We selected the candidate with the most top counts
as the output.

views in the input images, respectively. We can see that

our method reproduces the most plausible shapes and
textures, particularly from the input views. This result

indicates that our three-stage view translation is supe-

rior to the direct view translation approaches. However,

our method sometimes yields unnatural repetitive pat-

terns in estimated textures (Fig. 6).

4.4 Quantitative comparisons

Table 1 summarizes the quantitative comparison result.

Regarding height maps, our method was the best for

both the input and overall views. As for textures, our

method was inferior to pix2pixHD++ for the overall

views, probably due to the repetitive texture patterns

in our method. In the input views, our method yielded

the best quality textures. These results indicate that

our method yields more plausible terrains than the com-
pared methods, particularly in the input views.

4.5 Our multimodal terrain outputs

Fig. 7 shows our multimodal terrain outputs yielded

by our completion network. Similar to the qualitative

comparison, we show both the input and overall views.

We can see that our terrains’ shape and texture are

consistently faithful to the ground truth in the input

views, whereas they have rich variations in the regions

that are invisible from the input views (highlighted with

the red boxes).

4.6 Ablation study

We conducted ablation studies to validate 1) the loss

functions for the depth estimation in Stage 1 and 2) the

frequency decomposition in our completion network in

Stage 2.

Validation of depth estimation losses. For training our

depth estimation network, we tried the following four

combinations of the loss functions explained in Sec-

tion 3.2:

– Ldepth + Lgrad,

– Ldepth + Lgrad + Lnormal (i.e., SARPN’s original),

– Lssitrim + Lgrad, and

– Lssitrim + Lgrad + Lnormal.

Table 2 summarizes the quantitative comparison. With-

out Lnormal, the estimation accuracy improved when

Lssitrim is used rather than Ldepth. With Lnormal, the

estimation accuracy improved when Ldepth was used
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Fig. 5 Qualitative comparison of 3D terrain outputs rendered in the input views (upper rows) and overall views (lower rows).
The orange points and the dashed lines indicate the viewpoints and the field of views in the input images, respectively.
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Table 1 Quantitave comparison of our method and the other methods for both over and input views. The best score of each
metric is highlighted by boldface.

Overall view
Height map Texture

δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑ MAE ↓ rel ↓ FID ↓ LPIPS ↓
SelectionGAN [17] 0.353 0.615 0.771 247 17.7 170 0.736
pix2pixHD++ [12] 0.354 0.616 0.774 237 9.46 75.6 0.379

Ours 0.596 0.809 0.895 143 8.77 82.2 0.364

Input view
Height map Texture

δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑ MAE ↓ rel ↓ FID ↓ LPIPS ↓
SelectionGAN [17] 0.372 0.642 0.793 237 1.36 77.1 0.0778
pix2pixHD++ [12] 0.386 0.650 0.799 226 0.718 28.0 0.0376

Ours 0.765 0.909 0.952 88.4 0.618 24.1 0.0329
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Fig. 6 Unnatural repetitive texture patterns sometimes ap-
pear in our completed textures.

but deteriorated when Lssitrim was used. In summary,

the best combination for all the evaluation metrics was

Lssitrim + Lgrad.

Validation of frequency decomposition of height maps.

For training our completion network (Section 3.5), we

compared the results with and without the frequency

decomposition of height maps. Table 3 shows the quan-

titative comparison result, indicating that the scores

without frequency decomposition are consistently bet-

ter than those with frequency decomposition. On the

other hand, we found that rippled artifacts appear with-

out frequency decomposition (Fig. 8). We thus adopted

frequency decomposition for better visual quality.

4.7 Application to real photographs

We also applied our and other methods to real land-

scape photographs (Fig. 9), for which ground-truth 3D

terrains are not available. In the first example of Fig. 9,

our result looks more similar to the input image than

the other methods. Theoretically, our method is ad-

vantageous over 3D visualizations of measured terrains

(e.g., Google Earth) in that ours can capture the view at

the moment of photo shooting, e.g., seasonal changes of

landscapes. However, as is often the case with learning-

based methods, our method heavily depends on the

training data. Indeed, our estimated texture in the sec-

ond example of Fig. 9 is quite different from the in-

put image, although our estimated geometry is still

better than those of the other methods. This defect

comes from the limited texture patterns in our training

dataset. Enriching our dataset for better generalizabil-

ity is left as future work.

5 Limitations

Our method has the following limitations. First, as is of-

ten the case with learning-based approaches, our method

cannot reproduce scenes that are largely different from

those in our training dataset. In addition to a failure

case with an inappropriate texture in Fig. 9, bottom,

Fig. 10 shows another example where not only the tex-

ture but also the geometry are inferred inaccurately.

Second, we have several assumptions, such as no wa-

ter surfaces and a calibrated camera, for simplifying

the problem, as explained in Section 3.1. These limi-

tations can be overcome by, for example, enriching the

dataset and inferring camera parameters as well. Also,

because we represent terrains as textured height maps,

our method cannot handle terrains with two or more

ground surfaces per pixel in height maps, such as caves

or overhangs. We will be able to support such compli-

cated geometry by adopting implicit geometric repre-

sentations [20].
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Fig. 7 Multimodal 3D terrain outputs of our completion network. Our method yields rich variations in geometry and texture
for regions invisible from the input views (highlighted with the red boxes in the overall views) while retaining the input views.

Table 2 Quantitative comparison of the four combinations of loss functions (i.e., Ldepth, Lgrad, and Lnormal from SARPN
and Lssitrim from MiDas) for the training our depth estimation network.

Combination of loss function δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑ MAE ↓ rel ↓
Ldepth + Lgrad 0.76 0.92 0.96 311.6 6.9× 105

Ldepth + Lgrad + Lnormal 0.78 0.93 0.97 282.7 3.8× 104

Lssitrim + Lgrad 0.88 0.97 0.99 197.3 75
Lssitrim + Lgrad + Lnormal 0.27 0.69 0.89 1064 83

Table 3 Quantitative comparison of results with and without frequency decomposition of height maps for the training of our
multi-task completion network.

Overall view
Height map

δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑ MAE ↓ rel ↓
Without frequency decomposition 0.611 0.821 0.900 133 4.69
With frequency decomposition 0.596 0.809 0.895 143 8.77

Input view
Height map

δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑ MAE ↓ rel ↓
Without frequency decomposition 0.780 0.918 0.956 82.2 0.253
With frequency decomposition 0.765 0.909 0.952 88.4 0.618
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W/o frequency decomposition W/ frequency decomposition

Fig. 8 Comparison of results without (left) and with (right)
frequency decomposition of height maps. Rippled artifacts
appear without frequency decomposition.

6 Conclusion

In this paper, we have proposed the first technique to

estimate a 3D terrain model from a single landscape

image. We achieved this via the following three stages.

First, from the input image, we estimated depth and

color maps using deep neural networks. We then tri-

angulated the resultant RGB-D map (i.e., color and

depth maps) and rasterized the triangular mesh from

the top view via orthogonal projection. Finally, we com-

pleted the missing regions using a multi-task network,

in which we also explored output variations using a

VAE for missing regions and frequency decomposition

of height maps for better visual quality. We created

a novel dataset of 3D terrains with measured height

maps and synthetic textures. Qualitative and quantita-

tive evaluations demonstrated that our method yields

more plausible 3D terrain models than the compared

methods, more faithful particularly in the input views.

Our future work will be devoted mainly to improv-

ing visual quality and accuracy, including exploration

of better network architectures and end-to-end train-

ing frameworks, and entrichment of our terrain dataset

using, e.g., Google Earth Engine, for better generaliz-

ability. We also would like to explore a self-supervised

approach that does not rely on synthetic datasets for

better generalization performance.
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