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Abstract—We present a technique for semi-automatically
super-deforming 3D character models. Super deformation is a
unique style of exaggeration, often seen in Japanese animation
and manga, to enhance characters’ cute appearances. Specifi-
cally, super-deformed (SD) characters are chubby with stubby
limbs and oversized heads. Given a reference SD model with
a rig and a target character model, our method automatically
calculates a rig of the target model, measures the body
shapes, and shortens the target limbs and enlarges the target
head by transferring the reference body shape. Our method
further makes the target face younger by applying a simple
deformation based on a biological insight. We demonstrate that
our method can create visually-pleasing SD character models
quickly.
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I. INTRODUCTION

Japanese animation (or “anime”) and manga have at-
tracted not only children but also adults around the world. In
such Japanese culture, super deformation is a unique style of
exaggeration to enhance characters’ cute appearances; super-
deformed (SD) characters are typically chubby with stubby
limbs and oversized heads, and resemble small children [1].
SD characters often appear not only in anime or manga
but also in commercials and character figures. Figure 1
shows a pair of normal and corresponding SD examples of a
character “Unity-chan”1. SD character models are currently
created by skilled artists via a burdensome manual process,
which hinders widespread use of SD characters. We thus
focus on semi-automatic creation of SD models from normal
character models.

However, designing a “good” SD model from scratch
is not easy even for professional artists, as we confirmed
through an interview with a character figure company. This
is because the definition of super deformation is ambiguous;
each SD model has its own appropriate style of exaggeration
and simplification, depending on various factors such as
the character’s personality, the character design in the story
series, and the style in specific product series. On the other
hand, if the designer can start from a base SD model that
is close to the output model, the designer can skip basic
modeling and focus on detail modification. We thus let the
user input an appropriate reference SD model as a hint for
avoiding excessive trial-and-errors in the early design stage.

1The models were obtained from http://www.unity-chan.com

Figure 1: “Unity-chan” (left) and its super-deformed (SD)
version designed by an artist (right).

In this paper, we propose a semi-automatic method that
can accelerate the modeling process of SD characters. The
inputs of our method are a reference SD model with a rig
and a target character model without any rig (Figure 2). Here
a rig is a standard data structure commonly used in character
animation, consisting of a skeleton (a tree structure of joints
and bones) and weight maps (weights of bones for the mesh
vertices). Our method automatically calculates the target rig,
measures body-shape parameters, and shortens the target
limbs as well as enlarges the target head by transferring
the reference body shape. Our method further makes the
target face younger by applying simple deformation based
on the biological insight by D’Arcy Thompson [2]. Our
method is automatic except for the face infantilization step
where the user tweaks the face shape by simply tuning a
single parameter. We demonstrate that our method can create
visually-pleasing SD character models quickly.

II. RELATED WORK

Shape deformation has been long studied in computer
graphics, and there are deformation techniques used for
human characters. For example, linear blend skinning [3]
and its successors [4] have been standard techniques for
animating characters. Body-shape control has been actively
studied. Blantz and Vetter published a seminal work for para-
metric control of human face model [5]. They scanned 199
human faces and constructed a statistical morphable model
of human face based on principal component analysis. This
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Figure 2: Overview of our system. Given target and reference SD models, our method calculates their body-shape parameters
and a target skeleton as well as weight maps. After applying a simple transformation to the target face, we obtain an output
SD model.

idea is later extended to morphable human body models [6],
[7]. Apart from statistical models, there are also techniques
for exaggerating body parts according to a user-specified
importance map [8] and deforming a body shape based on
an anatomical muscle model [9]. These methods are not
intended for SD character models.

The most related method to ours is that proposed by Shen
et al. [10]. Their method aims at super-deforming various
mesh models such as human characters and monsters. The
important differences with ours are as follows. (i) Their
method does not use a reference model and enforces the
user to manually tweak parameters for controlling shape
optimization. Our method, on the other hand, does not rely
on optimization, provides quick feedback to the user, and
can avoid excessive trial-and-errors by obtaining body-shape
parameters from a given reference SD model. (ii) Their
method implicitly assumes that an input character model
consists of only a single mesh. However, character models
often have cloth meshes as well as body meshes, which
might cause inconsistent deformation between the meshes
(see Section IV-B). Our method can handle models with
multiple meshes. (iii) To deform a character’s face, their
method deforms the head shape so that it approximates a
sphere. However, this sphere approximation is not sufficient
to making the face look younger. For this, our method
applies a biology-inspired transformation to the head model.

III. OUR ALGORITHM

A. Overview

Figure 2 shows the overview of our system. Our inputs
are two character models; one is the target model, which

has normal body proportion without any skeleton or weight
maps. The other is the reference model, which is an SD
model with a skeleton and weight maps, selected by the
user as a reference. We assume both models are in a rest
pose and have cloth and hole-free body meshes separately.
A rest pose is common and simplifies the measurement
and deformation of body shapes. Hole-free body mesh is
required for calculating weight maps [11]. The key idea
is to transfer the body shape from the reference model to
the target model for automatically determining the basic
shape of the output SD model. This goal is accomplished
as follows. First, we calculate a skeleton and corresponding
weight maps for the target model (Section IV). We then
measure body-shape parameters, i.e., each bone’s length
and distance to the surrounding mesh, for both the target
and reference models, and super-deform the target model
automatically (Section V). The user can further make the
target face look younger by lowering the eye positions and
rounding the chin based on a biology-inspired transformation
(Section VI). The user can optionally add manual modifica-
tions, e.g., deformation of hair polygons, to obtain the output
model. We describe the details in the following sections.

IV. SKELETON AND WEIGHT MAP CALCULATION

A. Skeleton definition

We use a skeleton often used in linear blend skinning for
character animation. A skeleton is a tree structure where
joints and bones serve as nodes and edges (Figure 3,
left). Let N and M be the numbers of joints and bones
respectively. The position of joint j(j = 1, 2, ..., N) is
denoted by pj . Bone i(i = 1, 2, ...,M) contains a parent



Figure 3: Tree structure consisting of joints and bones (left),
and bone groups (right).

node parent(i) and child node(s) child(i), and its length is
li = ||pparent(i) − pchild(i)||. If a parent node has multiple
children nodes, we calculate the bone length for each pair
of parent and child nodes. We assume both skeletons of the
reference and target models have the same structure, i.e.,
the same numbers of joints and bones with the same con-
nections. We further separate bones into user-defined bone
groups (Figure 3, right), and apply similar deformations to
bones in each bone group G.

B. Calculation of skeleton and weight maps

Our method automatically calculates a skeleton and
weight maps of the target model. For a skeleton, we em-
ploy the ray-casting based method by Lopez et al. [12]
using a publicly-available implementation that can handle
even fingers automatically. For weight maps, we use the
optimization-based method by Baran et al. [11] as follows.

The method by Baran et al. [11] automatically calculates
weight maps by solving the thermal diffusion equation.
Using this method we obtain weight maps consisting of
weight wki of each bone i for vertex k (where wki ≥ 0

and
M∑
i=1

wki = 1). This method works well with single-

mesh models, as demonstrated in the previous study [10].
However, most character models wear multiple clothes that
are represented as non-manifold meshes separated from the
body meshes; if we apply the method by Baran et al. [11] to
both cloth and body meshes naı̈vely, they will have different
weights at their contact part and therefore deform differently,
resulting in penetrations or gaps between cloth and body
meshes (Figure 4(c)).

To ensure that the weights of cloth and body vertices
match at contact parts, our method first calculates the
weights for the body mesh, and then transfers the weights
to the cloth meshes by linearly blending weights of the
nearest body vertices. This modification yields consistent
deformation of the clothes and body (Figure 4(e)).

(b) naive weight map

(a) body weight map

(c) penetrated skirt

(d) transferred weight map (e) consistently-deformed skirt

Figure 4: Comparison of cloth weight map calculation. (b)
The naı̈vely calculated weight map of the skirt does not
match (a) that of the body, which causes (c) penetration. (d)
By transferring the weights from the body to the skirt, (e)
the skirt deforms consistently with the body.

V. SUPER-DEFORMATION USING BODY-SHAPE
PARAMETERS

A. Body-shape parameter measurement

Our method automatically measures body-shape parame-
ters based on the method by Lopez et al. [12]. The body-
shape parameters used in our method are (i) the length li of
each bone i and (ii) the radius ri of a cylinder approximating
the mesh surrounding bone i, which we call the surrounding-
mesh radius. We label each of them with labels tar (for the
target model) and ref (for the reference model). Let Lref =
{lref1 , lref2 , ..., lrefM } and Rref = {rref1 , rref2 , ..., rrefM } be
the sets of bone lengths and surrounding-mesh radii of the
reference model, respectively. Ltar and Rtar are defined
similarly for the target model.

Body-shape parameters are calculated as follows. Bone
length li is calculated simply as the distance between parent
and child nodes of bone i. Surrounding-mesh radius ri is
calculated based on ray casting. Figure 5 illustrates this
process. For each bone i, our method samples three points z
at a uniform interval along each bone. It then emits rays from
each sampled point z in directions orthogonal to the bone
equiangularly (we use 12 rays) in order to find the nearest
intersections with the body mesh. Given intersections, it
calculates the centroid and the average distance between
each intersection and the centroid. It finally calculates the
mesh-surrounding radius of bone i as an average of the
average distance at each sampled point z.



Figure 5: Calculation of surrounding-mesh radius. Left: We
sample points (blue) along each bone (red) and emit rays to
find mesh intersections (green). Right: We then calculate the
surrounding-mesh radius as an average of averaged distances
from centroids (magenta) to intersections.

B. Automatic Super Deformation

Our basic process of automatic super deformation is to
shrink the target limbs and enlarge the target head so that
the output model will have body proportion similar to that
of the reference model, while referring to the body-shape
parameters. For this, our method first modifies skeletons
based on the body-shape parameters and then deforms the
meshes of the target model using linear blend skinning.

1) Skeleton deformation: The target skeleton is deformed
by shortening each bone recursively from the root joint.
Bones belonging to the same bone group undergo similar
shortening. Specifically, for each bone i in bone group Gb,
the same shortening coefficient αb (αb < 1) is applied:

p′
child(i) = pparent(i) + αb (pchild(i) − pparent(i)). (1)

How to determine {αb} is explained in Section V-B3. Also,
the position of each joint j belonging to the child set of joint
child(i) is recursively updated:

p′
j = pj +∆pchild(i), (2)

∆pchild(i) = p′
child(i) − pchild(i). (3)

As a special case, only the head bone is enlarged; by
enlarging a head, limbs become relatively shorter than
the head, and thus we do not have to shorten the limbs
excessively. Specifically, the head bone length is updated
using an enlarging coefficient αhead (αhead > 1) as follows:

l′head = αhead lhead, (4)

where lhead and l′head are the head bone lengths before and
after enlargement. In our experiments, we use αhead = 1.5.

2) Mesh deformation: We explain mesh deformation
driven by bone shortening. The vertex position after de-
formation is calculated according to the change in joint
positions:

v′k = vk +

M∑
i=1

wki(λki∆pparent(i) + µki∆pchild(i)) (5)

where vk and v′k are the positions of vertex k before and
after the transformation, and wki is the weight of bone i for
vertex k. ∆pparent(i) and ∆pchild(i) are differences of joint

(a)

(b) (c)

Figure 6: (a) Original mesh as well as results of (b) bone
shrinkage and (c) mesh thickness adjustment.

positions. λki and µki are the weights of joints parent(i)
and child(i), and calculated as follows.

λki = 1−
∥proji(vk)− pparent(i)∥
∥pparent(i) − pchild(i)∥

, (6)

µki = 1−
∥proji(vk)− pchild(i)∥
∥pparent(i) − pchild(i)∥

(7)

where proji(vk) is the foot of a perpendicular draw from
vertex position vk on the line segment of bone i. These two
equations indicate that the closer vertex k is to a joint, the
greater the influence of the joint is.

We adjust not only the length of each bone but also the
thickness of the mesh around the bone. For each bone group
Gb, the vertex position of the mesh around bone i ∈ Gb is
changed as follows:

v′
k = vk +

∑
i∈Gb

wki(proji(vk)− vk)(1− βb) (8)

where βb is the thickness coefficient assigned for bone group
Gb. How to determine {βb} is described in Section V-B3.
Figures 6b and 6c show the results of applying bone short-
ening and mesh thickness adjustment, respectively.

3) Automatic coefficient calculation: The coefficients
{αb} and {βb} are calculated based on the body-parameters
(Lref , Rref ) and (Ltar, Rtar) as follows:

g =
l′tarhead

lrefhead

=
αhead l

tar
head

lrefhead

, (9)

αb = 1 + ηb (g
lrefi

ltari

− 1), i ∈ Gb, (10)

βb = 1 + ϕb (g
rrefi

rtari

− 1), i ∈ Gb. (11)

where g is the ratio of the enlarged target head length
(Section V-B1) to the reference head length. ηb and ϕb are
coefficients for suppressing deformation; shortening body
parts such as shoulder and hip yields an unnatural body
shape because such parts cannot be well approximated as



a cylinder. Therefore, to suppress deformation of such parts,
we set ηshoulder = ηhip = 0.2 and ϕshoulder = ϕhip = 0.
For the rest parts, we set them to 1. For fingers and toes,
just shortening them makes the target parts similar to the
reference ones, and thus we just set αfinger = αfoot = 0.5
and βfinger = βfoot = 1. The user can also adjust the
coefficients, although we use the default values without
manual adjustments in our experiments.

VI. FACE INFANTILIZATION

Here we try to make the target face younger like a
child. Comparing faces of normal and SD models (see the
examples in Figure 1), we notice that the eye positions of
the SD model are lower than those of the normal model
while the chin of the SD model is more rounded. Our
method accomplishes both by applying a simple geometric
transformation to the head mesh. Our approach is inspired
by the biological theory by D’Arcy Thompson [2], which
claims that a wide variety of body shapes of related species
(e.g., crustacean, fishes or primate heads) can be well ap-
proximated by deforming one shape to another. Indeed, there
is an example movie [13] demonstrating infantilization of
character’s face based on his theory, but the specific function
for the transformation is not disclosed. Note that D’Arcy
Thompson’s theory does not mention a specific choice of
transformation for each shape, and thus we have to design
deformation functions by ourselves.

We design our own deformation functions as follows. In
the bounding box of the head mesh, we set a normalized co-
ordinate system where the upper vertical direction indicates
+y direction and y ∈ [−0.5, 0.5]. We consider the following
two deformation functions:

f2(y) = γ (y2 − 0.52) + y, (12)

f4(y) = γ (y4 − 0.54) + y, (13)

where γ is a coefficient. Both two functions are designed
so that they squash the face only in the vertical direction,
and always satisfy f2(−0.5) = f4(−0.5) = −0.5 and
f2(0.5) = f4(0.5) = 0.5 for any γ. Figure 7 shows a
comparison. While both functions f2(y) and f4(y) can lower
the eye positions and make chins round, f2(y) has too strong
effects (Figure 7(d) and (e)). The sphere approximation
(Figure 7(f)), as done in [10], has only limited effects. We
thus use function f4(y) with manually selected γ for each
model in our experiments.

VII. DETAILED ADJUSTMENT

After the process described so far, we have a SD version
of the target model. The user can further modify the target
model manually. For example, we shorten long hair meshes
(Figure 8(b) and (f)) manually using the modeling software
3ds Max. In our experiments, we do not apply any other
manual editing unless otherwise noted.

(a) f2, γ = 1 (b) f2, γ = 0.5 (c) original face

(d) f4, γ = 2 (e) f4, γ = 1 (f) spherified face

Figure 7: Comparison of face transformations. (a)(b) Func-
tion f2 lowers eyes and rounds chins too much, while (f)
sphere approximation has limited effects. We use function
f4 in our results.

VIII. RESULTS

We implemented our prototype system on Blender and
Unity3D using Python and C# as programming languages.
We use the SD model shown in Figure 1 as a reference
model in our experiments. The computation time both for
calculating body-shape parameters and automatic deforma-
tion is less than ten seconds. A single execution of the
face transformation takes less than a second. When the user
repeats the face transformation until satisfied, it typically
completes within ten seconds. Figure 8 summarizes our
results. We can see the generated SD models look visually
pleasing with younger faces and stubby limbs.

Compared to the method by Shen et al. [10], their method
provides larger degrees of freedom to the user with much
more parameters than ours (i.e., only a single parameter
in our face infantilization), which causes more trial-and-
errors. Every time the user specifies any parameter(s), their
optimization step takes time ranging from a few seconds
to more than ten seconds. Longer computation time in the
trial-and-error loop is not desirable because the user usually
adds further manual editing as automatic process is often
insufficient; for example, Figure 7(f) demonstrates sphere
approximation similar to [10] does not work well.

IX. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a technique for semi-
automatically generating a super-deformed (SD) model from
a normal character model. We designed our method so that
it takes a reference SD model as input to learn body-shape
parameters for avoiding repetitive parameter tuning. Our
method automatically calculates the skeleton and weight
maps for a target model, while accounting for consistent



(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8: Our results. Using the SD model shown in Figure 1 as a reference model, our method generates SD models (b),
(d), (f) and (h) from normal models (a), (c), (e) and (g).

deformation between body and cloth meshes. The target
model is then automatically super-deformed by transferring
the body-shape parameters from the reference model. The
target face becomes younger through a simple quartic trans-
formation.

As future work, we would like to improve the appearance
of generated SD characters. For example, SD legs should
have less muscles with children’s skeleton structure, and
geometric as well as texture details should be suppressed,
while discriminative features of the character should be
exaggerated.

As a limitation, our method currently assumes that each of
reference and target models has a hole-free skin mesh and a
separated garment mesh so that we can measure body-shape
parameters and calculate weight maps, which is often not the
case with character models publicly available on the Internet.
Considering different methods for calculating weight maps is
also an interesting future direction. For example, the voxel-
based method [14] is an option, but weight transfer (Sec-
tion IV-B) would be required for separated skin and garment
meshes. Cage-based methods [15] would be beneficial to

handle separate meshes, if an automatic method [16] for
generating cages is available.
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biharmonic weights for real-time deformation,” ACM Trans.
Graph., vol. 30, no. 4, pp. 78:1–78:8, Jul. 2011.

[16] B. H. Le and Z. Deng, “Interactive cage generation for mesh
deformation,” in Proceedings of the 21st ACM SIGGRAPH
Symposium on Interactive 3D Graphics and Games, 2017,
pp. 3:1–3:9.


