
A Comparative Study of
Region Matching Based on Shape Descriptors

for Coloring Hand-drawn Animation

Yoshihiro Kanamori
University of Tsukuba

Email: kanamori@cs.tsukuba.ac.jp

Abstract—The work of coloring hand-drawn animation is done
by manually specifying and painting each closed region in line
drawings. To make this process more efficient, this research
creates associations between closed regions in line drawings
of adjacent frames, which need to be colored with the same
color. Feature values are first computed from the shape of each
closed region, and a cost of associating pairs of closed regions
is computed from these feature values. The combination of
associations that minimizes the total cost is then computed based
on these costs. Three shape descriptors for computing feature
values for each closed region are examined: ellipses, Fourier
descriptors, and shape context; and the accuracy of making
associations using each of them is studied.

I. INTRODUCTION

Since the advent of hand-drawn 2D animation, people have
been fascinated with it. However, even now with the ap-
pearance of production-support software, production of hand-
drawn animation is very labor-intensive and requires many
hours of work. This production includes the following pro-
cesses: drawing line drawings on paper and scanning them
for each frame, cleaning up the scanned line drawings, and
manually selecting and coloring each of the closed regions in
the line drawings. The work of coloring regions holds promise
for automation because it is simpler than other processes.

To automate the coloring process, we find associations be-
tween closed regions in adjacent frames of the animation, and
then can propagate colors to corresponding regions in adjacent
frames. Most existing such methods use feature values derived
from characteristic points on the outlines of closed regions to
find associations between closed regions [1], [2]. Examples of
the characteristic points include intersection points and points
where the curvature changes significantly. However, such char-
acteristic points on outlines are quite susceptible to changes
in shape due to motion in the animation, and this reduces the
accuracy of finding associations. In this research, the following
three shape descriptors, which are less susceptible to changes
in outline shape, are compared.

1) Ellipses roughly approximating the shapes of closed
regions [3],

2) Fourier descriptors expressing low-frequency compo-
nents of closed-region shape [4], and

3) Shape context, representing closed region shape in
polar coordinates and then as a 2D histogram of log-
distance and angle [5].

Of these, the method in [3] was originally proposed for
associating closed regions in line drawings of hand-drawn
animation. To associate closed regions, we should consider
the position and scale of each region to differentiate the region
from others within the same frame. On the other hand, Fourier
descriptors [4] and shape context [5] were developed to find
shapes similar to a single input shape, such as a logo or road
marker, so they provide for invariance under transformations
such as translation, scaling and rotation. We thus modify these
descriptors to take into account geometric transformations in
finding associations for the purposes of this research. The
cost of associating two closed regions is derived using these
shape descriptors, and the best matching of closed regions
between two adjacent frames is computed using bipartite graph
matching.

This paper reports on the results of experiments comparing
the accuracy of these methods using real, hand-drawn anima-
tion image data.

II. RELATED WORK

A simple method for painting closed regions on multiple
frames all at once is to use an “Onion fill tool”. With this
function multiple frames are stacked and all of the closed
regions that include a coordinate specified by the user are
colored with the same color. Such tools are not often used
in practice, because the multiple closed regions to be painted
must be overlapping, and it is not easy to specifying how to
paint correctly in one try.

Existing methods make links between closed regions using
outline shapes [1], [2]. Examples of outline shape descriptors
used include coding the outline shape as a text string, or
using an array of so-called dominant points. However, these
methods are not effective when the shape of the outline
changes significantly.

Another method uses the skeletal structure of objects in the
line drawing to find associations between closed regions [6],
but skeletal structure can only be applied to articulated char-
acters that have joints.

Sýkora et al. [7] proposed a method of applying color and
texture to hand-drawn animation by matching the positions
of images between successive frames. They also proposed
LazyBrush [8], which they used for coloration. However, their
method uses rigid shape matching [9], so it requires several
seconds to match positions for each successive frame and has



difficulty find associations when shapes change in a non-rigid
manner.

Generally, there has been much research in the computer
vision field on feature values used for finding such associations
in natural images. However, the images used in this research
are line drawings, which do not contain the kind of shading
information found in natural images, and only shape feature
values obtainable from line drawings are considered applica-
ble. Details on shape feature values can be found in references
such as [10]. This research compares the accuracy of finding
associations using shape feature values computed from ellipse-
based shape descriptors proposed recently [3], from Fourier
descriptors [4], and from shape context [5].

III. BASIC PROCESS OF ATTACHING CORRESPONDENCES

Regarding the input, line drawings are of course required,
but with only the line drawings, there is no way to check if
the coloring was done correctly. Thus, we take colored images
as input and perform a region partitioning by color to obtain
both the correct coloration data and the closed-region data,
assuming that each closed region is colored with a single color.
Line drawings are extracted as the lines marking the outlines
of the regions (mainly drawn in black) in the input images.

This research compares three shape descriptors within the
same framework. After region partitioning, associations linking
pairs of closed regions in successive frames are calculated.
Once these associations have been made for all frames, they
are used to create chains of closed regions between frames.
When a color is assigned to a single closed region, the color
is propagated to adjacent frames by following these chains of
associations.

The following describes in detail how these associations are
made. Let Nf and Nf+1 denote the number of closed regions
in each of two successive frames, f and f +1. A cost matrix,
A = {aij} is computed. Each element, aij , of this cost matrix
is the cost of associating the closed region i in frame f with the
closed region j in the frame f + 1 (Note i = 1, 2, · · ·Nf and
j = 1, 2, · · ·Nf+1). For A obtained in this way, the Hungarian
algorithm [11] is used to solve for a bipartite graph matching.
If the numbers of closed regions in the two frames are not
the same (i.e., Nf ̸= Nf+1), then one or more closed regions
are left without associations. This is understood to mean that
a closed region has newly appeared or disappeared in one of
the frames.

This research compares methods that compute the ele-
ments, aij , in the cost matrix, A = {aij}, using three different
shape descriptors. These shape descriptors are described below.

IV. ELLIPTICAL DESCRIPTOR

The method in reference [3] approximates each closed
region using an ellipse (Fig. 1). The ellipse i approximating
closed region i is computed from the centroid, ti, and covari-
ance matrix, Ci of the positions of each pixel in closed region
i. Here, the largest and smallest eigenvalues of the covariance
matrix, Ci, are designated λmax

i and λmin
i , and their associated

eigenvectors are emax
i and emin

i (assumed to be unit vectors),
respectively. Then the major and minor axes of ellipse i are
given by

√
λmax
i emax

i and
√

λmin
i emin

i respectively.

Fig. 1. Elliptic shape descriptors. In the method from reference [3],
associations between closed regions in consecutive frames are made based
on ellipses (red) approximating each closed region.

The association cost, aij , is derived from the orientation,
size and position of the ellipses approximating the two closed
regions, i and j, as follows.

aij = wangle a
angle
ij + wscale a

scale
ij + wpos a

pos
ij , (1)

aangleij = cos−1(emax
i · emax

j ), (2)

ascaleij =

√
max{λmax

i ,λmax
j }

min{λmax
i ,λmax

j } +

√
max{λmin

i ,λmin
j }

min{λmin
i ,λmin

j } −2, (3)

aposij = ∥ti − tj∥2, (4)

where wangle, wscale, and wpos are weightings. Coordinates
ti and tj are normalized by the image size. The values of
aangleij , ascaleij , and aposij each approach zero if the orientation,
size, and position respectively, of the ellipses approximating
closed regions i and j approach each other. To increase the
accuracy of associations further, information regarding regions
adjacent to regions i and j is also added to cost aij . This is
done by computing the centroid of the regions adjacent to
each of regions i and j and adding the distances they move
the association cost. The centroid, ni, of the regions adjacent
to closed region i is computed as follows.

ni =

∑
k∈{Oi,i} αkβk exp

(
−∥tk−ti∥2

σ2
i

)
tk∑

k∈{Oi,i} αkβk exp
(
−∥tk−ti∥2

σ2
i

) , (5)

σi = σ0 max
k∈Oi

∥tk − ti∥, (6)

where Oi is the set of closed regions adjacent to closed region
i. αk is the area of closed region k. If the area of closed
region k is large, then region k has a greater effect on the
position of the centroid. However, if region k has only small
contact with region i, it is desirable to give region k a smaller
weighting so that the centroid position is not overly affected
by movement of region k. For this reason, we multiply the
weighting by a contact rate, βk ∈ [0, 1]. The contact ration
is a value expressing what proportion of the total length of
the outline of region i is in contact with region k. Further,
background regions tend to be large, so if region k is part of
the background, the computation is done setting αk = αi and
tk = ti to reduce its effect. The effects of closed region k
also must be reduced if the position of its centroid is far from
that of closed region i, so the distance between the centroids
of the two regions is also used as a weighting, with σ0 as



the coefficient. Finally, the association cost aij is computed
by adding the term aneighborij multiplied by the weighting
wneighbor, as in the following equations.

aneighborij = ∥ni − nj∥2, (7)

aij = wangle a
angle
ij + wscale a

scale
ij + wpos a

pos
ij

+wneighbor a
neighbor
ij . (8)

V. FOURIER DESCRIPTORS

There are many variations of Fourier descriptors. Refer-
ence [4] reports on experiments using the following three
Fourier descriptors to search for similar shapes.

• Centroid distance: computes the distance between the
shape centroid and a point moving along the outline.

• Changes in curvature: computes changes in the curva-
ture of the outline.

• Cumulative angle: accumulates the angle between the
shape outline and a tangent.

It finds that the centroid distance produces the best results,
so this research uses a Fourier descriptor based on centroid
distance.

The Fourier descriptor based on centroid distance from
reference [4] is described as follows. The shape outline is first
converted to a polygonal curve line with N segments of equal
length. The distance from each vertex, t (t = 0, 1, . . . , N −1),
to the centroid is rt. Then the n-th Fourier coefficient, un

(n = 0, 1, . . . , N − 1) is computed as follows.

un =
1

N

N−1∑
t=0

rt exp

(
−j2πnt

N

)
, (9)

where j is the imaginary unit. The DC component, u0, has
only a real part, and depends on the scale of the shape. In
reference [4], the following shape feature vector, f , is used to
provide invariance over translation, scaling, and rotation.

f =

(
|u1|
|u0|

,
|u2|
|u0|

, · · · , |uN−1|
|u0|

)
. (10)

When comparing shapes, the initial K (0 ≤ K ≤ N ) elements
of the feature vector f are selected, and the Euclidean distance
between them is calculated as a degree of similarity.

Computation used in this research: This research also
computes the distance between centroids of two closed regions
to take their relative positions into consideration. The terms in
Equation (10) are divided by |u0| to achieve scaling invariance,
but in this research, relative size is also a consideration, so this
division is omitted. As a result, the feature vector, fi, for closed
region i is computed as follows.

fi = (|u0|, |u1|, · · · , |uK−1|) , (11)

This is the vector of absolute values of K Fourier coefficients.
The association cost, aij for closed regions i and j is computed
as follows.

aij = wfourier
trans ∥ti − tj∥+ ∥fi − fj∥, (12)

where ti and tj are the centroids of closed regions i and j

(normalized by the image size), and wfourier
trans is a weighting

value. The parameter values used were N = 64, K = 4, the
same as in reference [4], and wfourier

trans = 0.5.

VI. SHAPE CONTEXT

Shape context [5] is a two-dimensional histogram of the
positions of points relative to one point, in terms of log-
distance and angle. For invariance to scaling, each distance
is divided by the average distance before computing the log
distance. Using log distance captures the distribution in more
detail close to the origin, and in less detail farther away.
Log distances and angles are divided into Ndist and Nrad

partitions respectively, producing a histogram with a total
of Nbin = NdistNrad bins. To compute the similarity, Cij ,
between two histograms, i and j, a χ2 is used.

Cij =
1

2

Nbin∑
b=1

|hi(b)− hj(b)|2

hi(b) + hj(b)
, (13)

where hi(b) and hj(b) are the values in the b-th bins of the
normalized histograms for i and j.

Computation used in this research: As with the Fourier
descriptor case, this research also takes into consideration the
distances between centroids of closed regions and changes
in scale, so distances from the centroid for each region are
not divided by the average distance. The association cost, aij ,
between closed regions i and j is calculated by the following
equation.

aij = wshape
trans∥ti − tj∥+ Cij , (14)

where wshape
trans is a weighting factor.

Parameter values used were number of log-distance parti-
tions, Ndist = 5, number of angle partitions, Nrad = 12, the
same as in reference [5], and wshape

trans = 4.

VII. EXPERIMENTAL RESULTS

The comparison program was implemented in C++ using
OpenGL, GLUT and GLUI and was run on a notebook PC with
a 2.3 GHz Intel Core i7-2820QM CPU and 3.2 GB of memory.
The coloring for each region obtained from already colored
images was used as correct data. In experiments, associations
were first created using each of the shape descriptors. Color
was then applied to a single frame, propagated automatically
to adjacent frames, and the extent to which color was applied
correctly was evaluated quantitatively. The frame with the most
closed regions was selected as the frame to begin coloring.
When new closed regions appear in a frame, those regions
remain without associations, so a frame with as many regions
as possible was selected to minimize the number of regions
left without color.

Experimental results are shown in Figs. 3 and 4. The
images are trimmed to accommodate available space. Associa-
tions were applied using the ellipse, Fourier, and shape context
descriptors. Closed regions that were assigned the wrong color
are shown in red, and regions that had no association and
were not assigned a color are shown in green. The numbers
of errors and unassociated regions is shown. For these results,
the correctness rate is defined as the proportion of the number
closed regions that are colored correctly, and this is graphed
in Fig. 2. For each of Figs. 3 and 4, the Fourier and shape



TABLE I. COMPUTATION TIMES (S) FOR MAKING ASSOCIATIONS FOR
DIFFERENT IMAGE SIZES AND NUMBERS OF FRAMES. COMPUTATION
TIMES INDICATE TIME REQUIRED TO MAKE ASSOCIATIONS FOR ALL

FRAMES.

Fig. (Image size, no. of frames) Elliptic Fourier descriptor Shape context
Fig. 3 (3614×2053, 14 images) 0.11 0.056 0.032
Fig. 4 (3614×2053, 57 images) 0.51 0.32 0.19

context descriptors produced slightly higher accuracy than the
ellipse descriptor.

Computation times are shown in Table I. Region parti-
tioning was implemented with the same process for all three
methods and required 2.3 s and 8.1 s respectively for each of
the figures. Although the time required for region partitioning
increased with the image size, making the associations was
very fast in all cases. Results also showed that the Fourier
descriptor and shape context were both faster than the ellipse
method .

Considering the graphs in Fig. 2, all of the results showed
a rapid drop in correctness in the frames before and after
the frame to which color was applied, which had the most
closed regions. The frames with the most regions tend to be
cut up by objects like hair, hands, or arms, which increase
the number of closed regions. Such multiple closed regions
caused by screening should really be handled by making the
association with a single closed region before partitioning. In
other words, one-to-many associations are needed for closed
regions. However, the current framework with bipartite graph
matching cannot handle one-to-many associations and leaves
closed regions without associations. This results in a drop in
colorization accuracy. This result shows that making one-to-
one associations between closed regions a limitation in the
approach itself.

VIII. CONCLUSION AND FUTURE ISSUES

This research has studied a method toward automating the
work of coloring frames in the current production of 2D hand-
drawn animations. Three shape descriptors for closed regions
were used, based on ellipses, Fourier descriptors, and shape
context. The cost of making associations between regions
based on each of these was computed, and the associations
were made using bipartite graph matching. Experimental re-
sults showed that both the Fourier and shape context descrip-
tors produced better results than the ellipse descriptor, both
for accuracy and computation speed. However, the current

methods only support one-to-one associations between closed
regions, so cases requiring one-to-many associations, in which
new closed regions appear due to screening, cannot be handled.
Accuracy drops quickly for cases when such screening occurs
often. In the future, methods that handle the effects of such
screening well need to be developed.
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(a) Correctness rates for Fig. 3 (b) Correctness rates for Fig. 4

Fig. 2. Graphs of correctness rates (%) for the examples of automatic coloring in Figs. 3 and 4. The frames with the most closed regions in each were the
3-rd, and 13-th, respectively, so the correctness rate for those frames is 100%.
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Fig. 3. Results of experiments using a 14-frame sequence. Red indicates closed regions where an incorrect color was assigned, and green indicates closed
regions where no association was made, so no color was assigned. Color was assigned to the 3-rd frame, and the results from the 1-st, 2-nd, 4-th, and 14-th
frames only are shown here. c⃝2006 Nibariki/GNDHDDT.
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Fig. 4. Results of experiments using a 57-frame sequence. Red indicates closed regions where an incorrect color was assigned, and green indicates closed
regions where no association was made, so no color was assigned. Color was assigned to the 13-th frame, and the results from the 1-st, 11-th, 12-th, 14-th,
15-th, and 57-th frames only are shown here. c⃝2010 GNDHDDTW.


