
Real-Time Screen-Space Liquid Rendering
with Complex Refractions

T. Imai Y. Kanamori J. Mitani
University of Tsukuba

imai-t@npal.cs.tsukuba.ac.jp, {kanamori,mitani}@cs.tsukuba.ac.jp

Abstract
Particle-based liquid is often rendered only
with single refraction in real-time applications,
which deteriorates the reality of liquid. We
present a screen-space method for rendering
particle-based liquids with up to four refractions
in real time. Our method separates liquid
particles into splashes and aggregations (i.e.,
liquid bodies), and generates a pair of depth
maps of front- and back-facing surfaces for
each. We use the depth maps of splashes
as they are, but smooth those of aggrega-
tions to reduce small bumps. For smoothing
depth, we iteratively fit planes locally us-
ing moving least-squares, unlike previous
filtering-based approaches that cause undesir-
able refractions around depth boundaries. By
calculating refractions with physically-based
light attenuation, our method can render liq-
uids more realistically than previous methods.

Keywords: particle-based liquids, multiple
refractions, real-time rendering, screen-space
approach

1 Introduction

Particle-based liquid simulation [1, 2, 3] has
been widely adopted in interactive applications.
Nowadays even real-time liquid simulation with
millions of particles is possible using massively
parallel computation on multiple GPUs [4] or
machine learning [5].

To render liquids realistically, accurate han-
dling of refractions at liquid surfaces is visually

Figure 1: Our rendering result of liquid (40,000
particles, 67.6 fps at 1024× 768) in
consideration of up to four refractions
and the Beer-Lambert law.

crucial. In typical real-time applications, how-
ever, only single refraction at the front-facing
surface is calculated to reduce the rendering
cost, which cannot represent fascinating light in-
teractions in liquid and thus deteriorates the re-
ality of liquid. Accurate handling of refractions
has been overlooked in most real-time rendering
methods for particle-based liquids.

To the best of our knowledge, Imai et al.’s
method [6] for rendering liquid is the only real-
time method that can handle multiple refrac-
tions in the screen space. Their method calcu-
lates only two refractions per pixel because it
only generates the nearest and farthest surfaces
of liquid, and the iterative bilateral filtering used
for depth smoothing is too costly for more than
two depth layers. Here we point out that their



method has two problems that cause inaccurate
refractions. First, if the viewing ray hits the
front-facing surface of an isolated splash particle
in front of liquid bodies, the refracted ray cannot
find the back-facing surface of the splash, which
is not recorded in depth maps. Second, because
they employ filtering to smooth depth maps, the
resultant depth maps unnaturally warp towards
the viewpoint around depth boundaries. This
second issue is also problematic in the previous
filtering-based approaches [7, 8].

In this paper, we propose a real-time render-
ing method that addresses the problems above.
Our method separates liquid particles into splash
particles and aggregated particles, and generates
a pair of depth maps of front- and back-facing
surfaces for each, making up four depth maps in
total. We use the depth maps of splashes as they
are to keep their accurate shapes, but smooth
those of aggregations to reduce small bumps
on liquid surfaces. Instead of filtering to depth
smoothing, our method applies an iterative plane
fitting, which smoothes depth maps strongly
while keeping slopes around depth boundaries.

Obviously more refractions with more depth
layers would improve the realism of liquid, but
we demonstrate that up to four refractions with
four depth layers offers a good tradeoff between
visual quality and speed. By additionally con-
sidering light attenuation based on the Beer-
Lambert law, our method can render liquids
more realistically than previous approaches, as
shown in Figure 1.

2 Related Work

Liquid particles as metaballs. For rendering,
particle-based liquid has been represented as
blobs or metaballs. Liquid surfaces are then
extracted as polygonal meshes using march-
ing cubes, or directly rendered using ray cast-
ing/tracing. Kanamori et al. [9] rendered meta-
balls by ray-casting on the GPU only with sin-
gle refraction. Gourmel et al. [10] accelerated
ray tracing of metaballs using Bounding Volume
Hierarchy (BVH). Although these approaches
yield accurate surfaces, they are expensive to
render liquid with a large number of particles in
real time.

Scalar field discretization. An acceleration
technique for metaball rendering is to accumu-
late the density field of metaballs in a uniform
grid, and perform ray casting/tracing with the
grid, as demonstrated by Fraedrich et al. [11]
with single refraction. Rather than metaball’s
density field, Goswami et al. [12] employed ray-
tracing with a distance field defined by parti-
cles. Problems with grid-based discretization
are that coarse grids often miss small particles
and cause temporal aliasing while dense grids
require a large amount of memory to store the
scalar fields. Sparse representation of dense
grids would alleviate them, with additional per-
formance overhead.

Screen-space approaches. An approximate
yet fast way to generate liquid surfaces is to
smooth a depth map generated by rendering par-
ticles as spheres or ellipsoids. Müller et al. [13]
extracted liquid surfaces as screen-space poly-
gon meshes from the depth map of particles, and
then smoothed the meshes. Cords and Staadt [7]
generated surfaces by smoothing depth maps us-
ing binomial filter. van der Laan et al. [14]
also smoothed depth maps using Mean Cur-
vature Flow, which minimizes mean curvature
of liquid surface. They further calculated the
pseudo thickness to imitate the thickness of liq-
uid. Green [8] replaced Mean Curvature Flow
with separated bilateral filtering to reduce the
computational cost. Bagar et al. [15] intro-
duced adaptive curvature flow as well as a lay-
ered model of liquids to handle foams. Macklin
and Müller [1] demonstrated real-time render-
ing of particle-based liquids with ellipsoid splat-
ting [16] followed by smoothing [14].

Screen-space methods are scalable w.r.t. the
number of particles because only the step of ini-
tial depth generation depends on the number of
particles, which can be accelerated by extract-
ing near-surface particles and rendering them
only [12]. However, the approaches above target
single refraction at front-facing surfaces only.
Our method also belongs to screen-space meth-
ods, but calculates up to four refractions.

Refraction handling. In the context of
real-time rendering with polygon meshes,
Wyman [17] showed that just two refractions



Splash particles

Liquid volume

Eye

Front surface

Aggregated

particles

Refracted
Ray

Back surface

Figure 2: Problem 1. The refracted ray misses
the back-facing surface of the splash.
Also note that splash surfaces are flat-
tened due to Problem 2.

at front- and back-facing surfaces make re-
sults sufficiently photorealistic. His approach
was further extended by calculating the ray-
intersection at back-facing surfaces using the
binary search to handle deformable objects [18]
and by calculating total internal refraction [19].

Imai et al. [6] combined the above screen-
space approaches for generating depth maps and
calculating two refractions for the sake of liquid
surfaces. Because their method is closely related
to our work, we introduce it in the next section.

3 Two Refractions with
Smoothed Depth Maps

Here we briefly review the algorithm by Imai et
al. [6] for rendering liquid surfaces with two re-
fractions in screen space, and then point out the
two problems that cause inaccurate refractions,
as introduced in Section 1.

3.1 Algorithm by Imai et al.

Their method consists of three major steps,
namely, depth generation, depth smoothing, and
calculation of refractions. For depth genera-
tion, their method renders particles as spheres,
and records the depth values of front- and back-
facing surfaces of each sphere simultaneously
using dual depth peeling. It then smoothes both
of the nearest and farthest depth maps by apply-
ing bilateral filter iteratively. Finally, it calcu-
lates ray-surface intersections using the secant
method to calculate two refractions with the two
depth maps.

Bilateral
filter kernel

Filtered
depth

Desired
depth

z = - ∞ 

(background)

Convolve
iteratively

-z -z

Initial
depth

Figure 3: Problem 2. Filtered depth unnaturally
warps forward compared to the de-
sired depth. This warping causes un-
desirable refracted directions.

3.2 Problems of Their Algorithm

Problem 1. Figure 2 illustrates their first prob-
lem. Their method renders isolated splash parti-
cles and aggregated particles into the same depth
maps for nearest and farthest surfaces. If splash
particles accidentally lie in front of aggregated
particles, the splashes erroneously have elon-
gated volumes along viewing directions, starting
from the front-facing surfaces of the splashes
and ending at the back-facing surfaces of aggre-
gated particles. When viewing rays hit the front-
facing surfaces of such splashes, the refracted
rays cannot find the back-facing surfaces of the
splashes, which yields undesirable refractions.
From this fact, we conclude that refractions only
with nearest and farthest surfaces do not suffice
for liquid, unlike polygon meshes [17].

Problem 2. Figure 3 shows another problem.
If we apply filtering to depth boundaries, valid
depth values are available only on one side of the
filter kernel and values on the other side (e.g.,
z = −∞ for background) are ignored. Because
the valid depth values are larger (i.e., closer to
the viewpoint) than the value of the center pixel
and the filter weights are summed up to one,
the resultant depth also becomes larger than the
original depth of the center pixel. Consequently,
the smoothed depth maps unnaturally warp to-
wards the viewpoint around depth boundaries,
which is particularly noticeable in flattened look
of splash particles. This warping perturbs sur-
face normals, yielding undesirable refracted di-
rections. As we explained, previous filtering-
based approaches for depth smoothing [7, 8]
share the same issue.



Input: particles

Background (environment map)

Result Normal maps of aggregated particlesNormal maps of splash particles

Depth maps of aggregated particlesDepth maps of splash particles

Classify particles into two types
Calculate anisotropic kernels
(Precomputed during simulation)

Smooth depth maps of aggregated particles
Calculate normal maps

Demaps of splash particles

)

Front

BackBack

Front

BackBack

Render initial depth maps

Calculate refractions and colors

Front

Front

Figure 4: Overview of our method. Given liquid particles with classification (i.e., splash or aggregated
particles) and anisotropic kernels for aggregated particles, initial depth maps for front- and
back-facing surfaces are rendered. The depth maps of aggregated particles are smoothed
by iterative plane fitting. Finally, refractions and output colors are calculated to generate a
result image.

4 Our Method

4.1 Overview

We assume that classification of particles (i.e.,
splash or aggregated particles) based on the lo-
cal density of neighboring particles as well as
ellipsoidal shapes [16] of aggregated particles
can be precomputed at negligible cost, on top
of the nearest-neighbor searches during simula-
tion [20]. The particles’ positions and shapes
(i.e., sphere radius or ellipsoidal shapes) are
given as inputs.

We address the two problems described in
Section 3.2 as follows. For Problem 1, we sepa-
rate liquid particles into splash and aggregated
particles, and generate depth maps of nearest
and farthest surfaces for each of the two types of
particles. A liquid particle is classified as splash
if the local density is smaller than a threshold, or
otherwise classified as aggregated. Splash parti-
cles are rendered as spheres whereas aggregated
particles are rendered as ellipsoids [16] to flat-
ten the liquid surfaces. For Problem 2, we do
not smooth depth maps of splashes, but smooth
those of aggregated particles via iterative local
plane fitting, which does not cause depth warp-

ing around depth boundaries. After obtaining
four depth maps, we seek for ray-surface inter-
sections using the secant method to calculate re-
fractions up to four times. To enhance the real-
ity of liquid, we integrate the Beer-Lambert law
to calculate more accurate light attenuation than
the previous methods [14, 15].

Figure 4 summarizes the overview of our
method. Below we explain our four major steps,
i.e., initial depth generation, iterative local plane
fitting, intersection tests with two types of par-
ticles, and calculation of colors with the Beer-
Lambert law.

4.2 Initial Depth Generation

We obtain initial depth maps by rendering
spheres for splash particles, and by rendering el-
lipsoids for aggregated particles. We use the op-
timized method of Kanamori et al. [9] for ren-
dering spheres and Sigg et al.’s method [21] for
rendering ellipsoids. Surface normals of spheres
and ellipsoids are calculated analytically. The
nearest and farthest depth maps of splashes
are used as-is to keep the accurate shapes of
splashes. On the other hand, those of aggregated



particles are smoothed by iterative local plane
fitting, as explained in the next section.

In our implementation, each splash has the
same radius r, while ellipsoid sizes of aggre-
gated particles are varying but bounded by 1.2r.

4.3 Iterative Local Plane Fitting for
Depth Smoothing

We apply local plane fitting iteratively for
smoothing depth maps of aggregated particles.
Suppose we fit plane Πi to pixel i based on pixel
i and its neighbors Ni. The neighbors Ni are
sampled within a window of s× s pixels, where
s is the window size. We first calculate the eye-
space positions pi for pixel i and p j for its neigh-
bors j∈Ni from their depth values zi and z j. Let
the equation of plane Πi be nT

i x = di, where ni

is a unit normal (i.e., ‖ni‖= 1) and di is the dis-
tance to the origin. We determine the plane Πi

by minimizing the following error:

E = ∑
j∈Ni

wi j
(
nT

i p j−di
)2

s.t. ‖ni‖= 1, (1)

wi j = exp
(
−(z j− zi)

2/σ
2) , (2)

where σ is a user-specified parameter (we set
σ = 5.3r). We calculate the surface normal ni

as a weighted average of normals:

ni =
∑ j∈Ni wi j ñ j

‖∑ j∈Ni wi j ñ j‖
, (3)

where ñ j are aggregated particles’ normals be-
fore smoothing. Note that ñ j are unchanged but
ni is changed in each iteration because the z val-
ues in Eq. (2) are updated accordingly. From
condition ∂E

∂di
= 0, we obtain

di = nT
i pi, pi =

∑ j∈Ni wi j p j

∑ j∈Ni wi j
. (4)

Weighted averaging of normals is a common
technique in the literature of surface reconstruc-
tion from point clouds [22]. An important differ-
ence is that we use view-dependent weights, i.e.,
Eq. (2); see Section 5 for this choice of weight-
ing functions. Given the unit direction vector
v=(vx,vy,vz)

T of a viewing ray passing through
pixel i, the eye-space z coordinate of the ray-
plane intersection is

z =
di

nT
i v

vz. (5)

Note that the weighted averaged normals of
Eq. (3) do not represent the normals of the
smoothed surface accurately, and thus we re-
calculate surface normals after smoothing.

4.4 Intersection Tests with Two Types of
Liquid Particles

For each viewing ray, we have to check if the ray
hits splashes or liquid bodies, both of which are
recorded in different pairs of depth maps. There
are four patterns of orders in which a ray hits the
two types of liquid, i.e., splashes and aggrega-
tions; splashes→ splashes, splashes→ aggrega-
tions, aggregations→ splashes, or aggregations
→ aggregations. Note that we check whether
incident rays hit the front-facing surfaces and
whether exitant rays hit the back-facing sur-
faces, for each of splashes and aggregations. We
check all the four patterns for each viewing ray.
The percentage of each pattern is, for exam-
ple, 34.2%/47.2%/6.7%/11.9% in Figure 7, and
18.0%/64.5%/14.8%/2.7% in Figure 8.

4.5 Output Color Calculation with
Beer-Lambert Law

The output color c for each pixel is calculated
recursively with k-th intersections (k = 1,2,3):

c = F1 b(r1)+(1−F1)c(t1), (6)

c(tk) = Fk+1 b(rk+1)+(1−Fk+1)c(tk+1),
(7)

c(t4) = b(t4), (8)

where b(·) is the background color fetched from
the specified direction, rk the reflected direction,
c(tk) the refraction color in the refracted direc-
tion tk, and Fk a Fresnel coefficient, for which
we employ Shlick’s approximation [23]. If a
third intersection is not found, we set c(t2) =
b(t2).

Because the light path length in liquid is avail-
able, we can calculate the physically-based at-
tenuation due to light absorption in liquid based
on the Beer-Lambert law. Let cb be the color
of the light trasmitting in the liquid (either of r,
g, or b channels). We calculate the color c′b af-
fected by the Beer-Lambert law as follows:

c′b = cb exp(−al ca), (9)



(a) With view-independent weights (b) With view-dependent weights

Figure 5: Comparison of (a) view-independent
and (b) view-dependent weights used
in plane fitting. The latter preserves
depth gaps better than the former.

where a is the absorption coefficient, l the light
path length in the liquid, ca the strength of the
attenuation for each color channel, respectively.
In our results, we experimentally set a = 1.0 to
obtain good appearance.

5 Results

We implemented our method using C++ with
OpenGL, GLUT, GLUI and GLEW. We wrote
the shader codes using GLSL. The experiments
were conducted on a PC equipped with an Intel
Core i7-4770 3.40GHz CPU, 8GB RAM, and an
NVIDIA GeForce GTX TITAN GPU.

The scenes used in the following results
are “wave” with roughly 125,000 particles and
“steps” scene with roughly 40,000 particles.
The “wave” scene was pre-simulated while
“steps” scene was simulated on the fly on
the CPU. The reported computational times
do not include the time for simulation. The
times for calculating particle classification and
anisotropic kernels are not included either,
which we currently calculate on the CPU.

View-independent vs. dependent weights in
plane fitting. Figure 5 compares opaque sur-
faces smoothed using two candidates of weight-
ing functions in plane fitting; the left result
was rendered with view-independent weights
based on squared Euclid distance, i.e., wi j =
exp(−‖pi − p j‖2/σ2), while the right result
with view-independent weights based on eye-
space z values, i.e., Eq. (2). While the

depth gaps are smoothed out with the view-
independent weights, they are preserved with
the view-dependent weights because the latter
weights emphasize depth gaps more strongly.

Different parameter settings in plane fitting.
Figure 6 shows a comparison with different win-
dow sizes and numbers of iterations in plane fit-
ting. The resolution of each image is 640×480.
The results show that our iterative plane fitting
has a strong smoothing effect even with a few
iterations. To balance the quality and speed, we
chose 9×9 pixels as the window size. The num-
bers of iterations are two for “wave” scene in
Figure 7(c)(f) and five for “steps” scene in Fig-
ure 8(c)(f).

Different numbers of refractions. Figures 7
and 8 compare the results with different num-
bers of refractions. (a)(b) were rendered with
single and two refractions using the method by
Imai et al. [6]. (d) is a reference image ren-
dered using an offline ray tracer with surface
meshes. Note that this reference image does not
necessarily have the best quality, due to the low-
resolution surface meshes reconstructed from
the depth maps. (c)(f) were rendered using our
method.

Figure 7(e) clarifies the problems in (b); due
to Problem 1, the splashes seem as if they were
fused to the liquid body behind them. Also due
to Problem 2, the splashes seem as if they were
flattened, yielding unnatural refracted colors. In
Figure 8(e), (c1) and (d1) show our result looks
comparable to that of ray tracing. However,
from (c2) and (d2) in Figure 8(e), we can see our
result is quite different from that of ray tracing.
This is because we did not trace reflected rays
recursively, which is a limitation of our method.

Timing comparison. We also compared the
computational times of Imai et al.’s method and
ours. As shown in the graphs of Figure 9, we
can see the bottleneck of both methods is the
depth smoothing step, and the overall perfor-
mance of our method is better than their method;
our method can smooth depth maps faster, to the
comparable quality of their method, thanks to el-
lipsoidal kernels and iterative plane fitting. Note
that our timings do not contain the times for cal-



7
×

7
 p

ix
el

s
2 iterations1 iteration

5.3 msec 5.6 msec 6.0 msec

5.6 msec 6.0 msec 6.5 msec

6.0 msec 6.7 msec 7.3 msec

3 iterations 4 iterations
9

×
9

 p
ix

el
s

1
1

×
1

1
 p

ix
el

s

5.0 msec

5.1 msec

5.3 msec

Figure 6: Comparison with different window sizes and numbers of iterations in plane fitting. Each
image is trimmed to enlarge the liquid. The computational time is shown in each image.

[msec] [msec]

6
4
0
×

4
8
0

1
0
2
4
×

7
6
8

6
4
0
×

4
8
0

1
0
2
4
×

7
6
8

wave

6
4
0
×

4
8
0

1
0
2
4
×

7
6
8

6
4
0
×

4
8
0

1
0
2
4
×

7
6
8

steps

Refraction

Surface normal

Depth smoothing

Initial depth map

Ours

0

5

10

15

20

25

0

5

10

15

20

25Imai et al. Imai et al.

Ours

Figure 9: Graphs of computational times (msec)
of Imai et al. [6] and ours in “wave”
and “steps” scenes.

culating ellipsoidal kernels, and thus the perfor-
mance gap would be shortened, depending on
implementations.

Million particle results. Figure 10 shows
our results with 1,056K particles, rendered at
1024× 768 with five iterations of plane fitting.
Thanks to our screen-space approach, the frame
rates are still quite fast.

frame #5

13.8 msec

frame #30

17.7 msec

frame #51

26.8 msec

frame #70

25.7 msec

Figure 10: Our results with 1,056K particles,
rendered at 1024×768.

Animation sequences. Figure 11 shows
frames from animation sequences of “wave”
and ”steps” scenes rendered using our method
with the Beer-Lambert law. Please also refer
to the accompanying video for the original
animations.

6 Conclusions and Future Work

In this paper, we have proposed a screen-space
method for rendering particle-based liquids with



(a) Single refraction only by Imai et al.

3.7 msec 6.1 msec 4.5 msec

4.6 msec

(b) Two refractions by Imai et al. (c) Up to four refractions by our method

(f) Up to four refractions plus light attenuation(d) Ray tracing with surface meshes (e) Enlarged images of (b), (c), and (d)

(b1)

(b2)

(c1)

(c2)

(d1)

(d2)

Figure 7: Comparison of “wave” scene with different number of refractions, rendered at 640×480.

up to four refractions in real time. We first
pointed out the problems of the filtering-based
method by Imai et al. [6] and their related meth-
ods [7, 8], which cause undesirable refractions.
We solved the problems by separating liquid
particles into splash and aggregated particles,
and by performing iterative local plane fitting,
instead of filtering-based depth smoothing. By
calculating light attenuation based on the Beer-
Lambert law, we could further enhance the real-
ity of liquid.

For future work, we would like to acceler-
ate our current bottleneck steps, namely, depth
smoothing and initial depth map generation.

Acknowledgements

We would like to thank Dr. Barbara Solenthaler
for helpful comments. We would also like to
thank Dr. SoHyeon Jeong for proofreading our
paper and providing the simulation data in Fig-
ure 10. Yoshihiro Kanamori is funded by JSPS
Postdoctoral Fellowships for Research Abroad.

References

[1] Miles Macklin and Matthias Müller. Po-
sition based fluids. ACM Trans. Graph.,

32(4):104:1–104:12, July 2013.

[2] Markus Ihmsen, Jens Orthmann, Barbara
Solenthaler, Andreas Kolb, and Matthias
Teschner. SPH Fluids in Computer Graph-
ics. In Sylvain Lefebvre and Michela
Spagnuolo, editors, Eurographics 2014 -
State of the Art Reports. The Eurographics
Association, 2014.

[3] Florian Reichl, Matthäus G. Chajdas, Jens
Schneider, and Rüdiger Westermann. In-
teractive rendering of giga-particle fluid
simulations. Proceedings of High Perfor-
mance Graphics 2014, 2014.

[4] Takahiro Harada, Issei Masaie, Sei-
ichi Koshizuka, and Yoichiro Kawaguchi.
Massive particles: Particle-based simula-
tions on multiple GPUs. In ACM SIG-
GRAPH 2008 Talks, pages 38:1–38:1,
2008.

[5] L’ubor Ladický, SoHyeon Jeong, Barbara
Solenthaler, Marc Pollefeys, and Markus
Gross. Data-driven fluid simulations us-
ing regression forests. ACM Trans. Graph.,
34(6):199:1–199:9, October 2015.

[6] Takuya Imai, Yoshihiro Kanamori, Yukio
Fukui, and Jun Mitani. Real-time screen-



(a) Single refraction only by Imai et al.

13.7 msec 22.8 msec 13.2 msec

13.4 msec

(b) Two refractions by Imai et al. (c) Up to four refractions by our method

(f) Up to four refractions plus light attenuation(d) Ray tracing with surface meshes (e) Enlarged images of (b), (c), and (d)

(b1)

(b2)

(c1)

(c2)

(d1)

(d2)

Figure 8: Comparison of “steps” scene with different number of refractions, rendered at 1024×768.

space liquid rendering with two-sided re-
fractions. In Proceedings of NICOGRAPH
International 2014, pages 71–76, 2014.

[7] Hilko Cords and Oliver Staadt. Instant liq-
uids. In Poster proceedings of ACM Sig-
graph/Eurographics symposium on com-
puter animation, 2008.

[8] Simon Green. Screen space fluid rendering
for games. GDC 2010: Game Developers
Conference 2010.

[9] Yoshihiro Kanamori, Zoltan Szego, and
Tomoyuki Nishita. GPU-based fast ray
casting for a large number of metaballs.
Computer Graphics Forum, 27(2):351–
360, 2008.

[10] Olivier Gourmel, Anthony Pajot, Mathias
Paulin, Loı̈c Barthe, and Pierre Poulin. Fit-
ted BVH for fast raytracing of metaballs.
Computer Graphics Forum, 29(2):281–
288, 2010.

[11] Roland Fraedrich, Stefan Auer, and
Rüdiger Westermann. Efficient high-
quality volume rendering of SPH data.
IEEE Transactions on Visualization and
Computer Graphics (Proceedings Visual-

ization / Information Visualization 2010),
16(6):1533–1540, 2010.

[12] Prashant Goswami, Philipp Schlegel, Bar-
bara Solenthaler, and Renato Pajarola. In-
teractive SPH simulation and rendering on
the GPU. In Proceedings of the 2010 ACM
SIGGRAPH/Eurographics Symposium on
Computer Animation, pages 55–64, 2010.

[13] Matthias Müller, Simon Schirm, and
Stephan Duthaler. Screen space meshes.
In Proceedings of the 2007 ACM SIG-
GRAPH/Eurographics Symposium on
Computer Animation, pages 9–15, 2007.

[14] Wladimir J. van der Laan, Simon Green,
and Miguel Sainz. Screen space fluid ren-
dering with curvature flow. In Proceedings
of the 2009 Symposium on Interactive 3D
Graphics and Games, pages 91–98, 2009.

[15] Florian Bagar, Daniel Scherzer, and
Michael Wimmer. A layered particle-
based fluid model for real-time rendering
of water. Computer Graphics Forum (Pro-
ceedings EGSR 2010), 29(4):1383–1389,
June 2010.

[16] Jihun Yu and Greg Turk. Reconstruct-
ing surfaces of particle-based fluids using



frame #30 frame #60 frame #90 frame #120

frame #150 frame #180 frame #210 frame #240

frame #150 frame #200 frame #250 frame #300

frame #350 frame #400 frame #450 frame #500

Figure 11: Animation sequences of “wave” (top) and “steps” (bottom) scenes.

anisotropic kernels. ACM Trans. Graph.,
32(1):5:1–5:12, 2013.

[17] Chris Wyman. An approximate image-
space approach for interactive refraction.
ACM Trans. Graph., 24(3):1050–1053,
2005.

[18] Manuel M. Oliveira and Maicon Brauwers.
Real-time refraction through deformable
objects. In Proceedings of the 2007 Sym-
posium on Interactive 3D Graphics and
Games, pages 89–96, 2007.

[19] Scott T Davis and Chris Wyman. Inter-
active refractions with total internal reflec-
tion. In Proceedings of Graphics Interface
2007, pages 185–190, 2007.

[20] Matthias Müller, David Charypar, and
Markus Gross. Particle-based fluid
simulation for interactive applications.
In Proceedings of the 2003 ACM SIG-
GRAPH/Eurographics Symposium on

Computer Animation, pages 154–159,
2003.

[21] Christian Sigg, Tim Weyrich, Mario
Botsch, and Markus Gross. GPU-based
ray-casting of quadratic surfaces. In Pro-
ceedings of the 3rd Eurographics/IEEE
VGTC conference on Point-Based Graph-
ics, pages 59–65, 2006.

[22] Marc Alexa, Markus H. Gross, Mark
Pauly, Hanspeter Pfister, Marc Stam-
minger, and Matthias Zwicker. Point-
based computer graphics. In SIGGRAPH
2004, Course Notes, page 7, 2004.

[23] Christophe Schlick. An inexpensive
BRDF model for physically-based ren-
dering. Computer Graphics Forum,
13(3):233–246, 1994.


