
Deformation and Fracturing Using Adaptive Shape

Matching with Stiffness Adjustment

Makoto Ohta, Yoshihiro Kanamori, Tomoyuki Nishita

The University of Tokyo

7-3-1 Hongo, Bunkyo-ku

Tokyo, 113-0033 Japan

Tel. (+81)03 5841 4096 Fax. (+81)03 5803 7288

email: {mktoota,pierrot,nis}@nis-lab.is.s.u-tokyo.ac.jp

Abstract

This paper presents a fast method that computes deformations with fracturing of an

object using a hierarchical lattice. Our method allows numerically stable computation

based on so-called shape matching. During the simulation, the deformed shape of the

object and the condition of fracturing are used to determine the appropriate detail level

in the hierarchy of the lattices. Our method modifies the computation of the stiffness of

the object in different levels of the hierarchy so that the stiffness is maintained uniform

1

by introducing a stiffness parameter that does not depend on the hierarchy. By merging

the subdivided lattices, our method minimizes the increase of computational cost.

Keywords: interactive deformation, soft body, shape matching, fracturing

2

Introduction

Physically-based simulations of deformations and fracturing can provide realistic anima-

tions of everyday materials such as cloth, skin of animals or human characters, and thus

have been actively studied since the pioneer work by Terzopoulos [1]. For interactive ap-

plications like games, however, a large number of existing techniques are not feasible due

to the lack of requirements, i.e., computational efficiency, robustness or controllability of

deformations.

To fulfill these requirements, Müller et al. [2] recently established a simple technique

called shape matching. Their approach approximates an object with a set of particles. The

particles are moved independently according to external forces, and then pulled to the opti-

mal positions that are found by calculating a rigid transformation that matches the original

configuration of particles to the current configuration. While this computation is derived

geometrically and not based on physical laws, it yields visually-plausible deformations effi-

ciently in a numerically-stable way. Shape matching is considered promising for the use in

entertainment as several researches extend this direction. Rivers and James [3] proposed a

method that utilizes a uniform lattice to accelerate the computation and to handle smoother

deformations than those of Müller et al. Steinemann et al. [4] introduced an adaptive lattice

to further accelerate shape matching and also used the lattice for dynamic level-of-detail

control.

Although the adaptive technique by Steinemann et al. offered a large contribution to

3

improve the efficiency of shape matching, it has a problem that the results of deformations

by their method largely differs from those using a uniform lattice. This is because, in the

adaptive lattice, optimal positions calculated for consecutive levels are largely different,

which may prevent users from predictable parameter tuning. As for fracturing, their method

maintains connections between cells in the lattice in order to detect topological changes

and demonstrates explicit cutting of deformable objects. However, it does not provide a

mechanism to handle fracturing as the results of large deformations when using an adaptive

lattice.

In this paper, we present an adaptive shape matching technique that significantly alle-

viates the deformation artifacts of Steinemann et al.’s method. Our method adjusts the be-

haviors of deformations between different levels in an adaptive lattice with negligible cost.

As for fracturing, we offer an algorithm to adaptively subdivide the lattice to create com-

plex crack surfaces caused by large deformations. Excessively subdivided regions around

crack surfaces are merged in order to reduce the computational costs. This extension is quite

beneficial for maintaining deformations interactive even for a user session where complex

fracturing frequently occurs.

Related Work

Physically-based simulations of deformable objects have significantly advanced in the two

decades [1] in computer graphics. Representatives of physically-based methods are a mass-

4

spring system and a finite element method (FEM). Mass-spring systems [1] are fast to com-

pute, easy to understand and implement and thus widely used, however, suffer from numer-

ical stability. More sophisticated approaches include FEMs. While FEMs and their variants

are well matured in material engineering, they are also introduced in the field of computer

graphics [5, 6, 7, 8, 9, 10, 11, 12]. There are also mesh-free formulations [2, 13, 14]. These

techniques simulate realistic deformations based on physically accurate computation, but are

performed offline due to the high computational costs. Müller et al. [15, 16] significantly

accelerated deformations based on a FEM using simplified formulation and a low-resolution

mesh. It is worth mentioning that they also handled fracturing that occurs as a result of ex-

treme deformations in real time, however, the rough crack surfaces due to the low-resolution

mesh yields poor visual quality. Please refer to [17] for more details on the recent advances

in physically-based techniques.

Müller et al. [2] proposed a deformation technique called shape matching, targeting

at interactive applications such as games and surgical simulations. The shape matching

technique approximates an object with a set of particles, and thus this technique can be

categorized into mesh-less methods. While this computation is not based on physical laws,

it is fast and numerically stable, and yields visually plausible deformations. In the next

section, we introduce the algorithm of shape matching as well as its variants [3, 4] because

they form the basis of our method.

5

Deformation through Shape Matching

Our method is based on shape matching because it is fast and numerically stable under all

conditions, and thus suitable for interactive applications. The following sections explain the

concept of shape matching and discuss the possible problems.

Point-based Deformation Through Shape Matching

Here we explain the fundamental algorithm of shape matching proposed by Müller et al. [2].

Their method approximates an object with a set of particles. In each time step, the particles

are moved independently according to external forces, and then pulled to the positions of a

certain shape called the goal shape (see Figure 1 (a)). The goal shape is found by assuming

the object were a rigid body and by aligning the particles with their original positions. This

computation is similar to the iterative closest point (ICP) algorithm [18] in the computer

vision community. Specifically, a rotation matrix R and the translation vectors are computed

to minimize the sum of the squared distances of each node i (i = 0, 1, 2, · · ·) between the

initial position x0
i and the current position xi. The translation vectors are given as centers

of mass, i.e., xcm =
∑

i mixi/
∑

i mi and x0
cm =

∑
i mix

0
i /

∑
i mi. Concerning with the

rotation matrix R, first, a matrix A that contains both scaling and rotation is calculated:

A = (
∑

i

mipiq
T
i)(

∑

i

miqiq
T
i)−1, (1)

where mi is mass of each node i, pi = xi − xcm and qi = x0
i − x0

cm. The rotation matrix

R can be found via polar decomposition A = RS, where S is the scaling part of the matrix

6

A. The goal position gi of each node i is then computed as

gi = R(x0
i − x0

cm) + xcm, (2)

and the velocity vi and the position xi of each node i can be decided as

vi(t + h) = vi(t) + α
gi(t) − xi(t)

h
+ h

fext(t)

mi

, (3)

xi(t + h) = xi(t) + hvi(t + h), (4)

where t is the present time, h is the interval of a time step, fext is an external force and

α (0 < α ≤ 1) is a parameter that simulates stiffness.

Müller et al.’s method uses β (0 ≤ β < 1) to extend Equation (2) to

gi = (βA + (1 − β)R)(x0
i − x0

cm) + xcm. (5)

β controls the stiffness of the object; the object becomes soft if β is large while the object

becomes hard if β is small. However, their method is limited to simple deformations and

cannot handle complicated deformations. To alleviate this, Müller et al. also proposed the

use of clustering; dividing an object to some clusters, performing shape matching on each

cluster and then blending the deformations between clusters.

Lattice-based Deformation Through Shape Matching

Rivers and James proposed lattice shape matching (LSM) [3] to make the deformations

much smoother than the clustering results of Müller et al. Additionally, LSM can simulate

fracturing.

7

The overview of LSM is as follows. First, LSM approximates an object with a uniform

lattice, and places nodes at the lattice points. The nodes are used as particles for shape

matching. LSM then makes a cubical cluster region for each node to smooth the behavior

of deformations. For each cluster region, LSM performs shape matching with regard to the

nodes in the cluster region.

The size of the cluster region is determined by w ∈ {1, 2, . . . }; the length of an edge of

the cluster region is 2w+1 (see Figure 1 (b)). w is used to control the stiffness of the object.

A problem of LSM is about its poor scalability. Because LSM uses a uniform lattice,

it suffers from high computational costs for representing complicated shapes or fine crack

surfaces.

Lattice-based Deformation Applying Adaptive Subdivision

Steinemann et al. [4] performed shape matching using an octree-based hierarchical data

structure instead of a uniform lattice. Their method can handle complicated objects effi-

ciently by adaptively and dynamically changing the subdivision levels of the lattice accord-

ing to the viewpoint or the state of deformations. However, the subdivision levels are not

dynamically changed in the case of fracturing, and thus their method is not so efficient for

fracturing. Even worse, it holds a problem that, when changing the subdivision levels, the

behavior of deformations changes because the goal positions are different between the levels

and the consistency between them is not considered.

8

Proposed Method

Overview

Our method handles elastic objects in 3D, and deals with collisions, deformation and frac-

turing. Input objects are assumed to be represented by a polygonal mesh.

Our method simulates deformation and fracturing using an adaptively subdivided lat-

tice, preserves the stiffness of the object when the subdivision level of a lattice is changed

and enables visually more plausible animations of deformation and fracturing than previ-

ous methods. Our method consists of a preprocessing step and run-time computation of

deformation and fracturing, as described below.

Preprocessing

In preprocessing, our method creates an octree-based data structure. First, our method rep-

resents an object with a lattice at each subdivision level, and places nodes at the center of

mass of each lattice cell. Second, it creates an octree by establishing creating parent-child

relationships between nodes that are in equivalent positions at different subdivision levels.

Finally, at each subdivision level, if the mass mi of a node i exceeds a threshold, we select

the parent node and remove its children for the purposes of the deformation computation;

otherwise, the children nodes remain (see Figure 2 (a)).

A cluster for a node at the finest subdivision level is defined as a cubical region whose

9

size is 2w + 1. The cluster for a parent node is defined as the union of all cluster regions of

its children. By repeating this process recursively, we can define a cluster region for each

node.

Deformation

Shape Matching Using an Adaptively Subdivided Lattice

Our method computes deformation through shape matching for each cluster region. How-

ever, a lattice cell does not always lie completely within a cluster region in the case of an

adaptively subdivided lattice, and Equation (1) needs to be modified as follows. If a lattice

cell whose center is node i is partially covered by a cluster region R, we recursively find

node i’s descendants that are completely within the region and compute the sum of their

mass mi,R. The matrix A in Equation (1) is then substituted by

A = (
∑

i∈R

mi,Rpiq
T
i)(

∑

i∈R

mi,Rqiq
T
i)−1, (6)

which uses mi,R instead of mi in Equation (1) (see Figure 2 (b)).

Stiffness Consistency when The Subdivision Level of Nodes are Changed

Steinemann et al.’s method [4] bears a problem that the behaviors of deformation differ

between different subdivision levels. This happens because the goal shapes of parent nodes

are different from those of their children and therefore inconsistent.

10

Our method improves the consistency of the deformations before and after changing the

subdivision level of a node by using the parameter β (see Equation (5)), which controls the

stiffness of the object and is independent of the size of a cluster region. Each node’s goal

position gi is decided by Equation (5).

The Derivation of Appropriate β

To simplify the explanation, we show the derivation of the value of β in 1D. In this case, the

shape of the object is a segment and its data structure is a binary tree; each parent node has

two children.

We decide that the mass of a node at the smallest subdivision level is 1, the value of β

used for shape matching in the cluster region of this node is 0, the size of this cluster region

is w and the mass of a node i is mi. If the size of a cluster region is w, the length of a cluster

region corresponding to a node with the smallest subdivision level is 2w + 1 and the length

of a cluster region of its parent node is 2w + 2, because this region is the union of regions

of its children nodes (see Figure 3 (a)). Now, we assume that an object whose initial length

is 2w + 2, is deformed by an external force and its length is x (see Figure 3 (b)). Regarding

the two children nodes, the length of the initial shape of this object in a cluster region of one

child node is 2w + 1, and, after deformation, its length becomes (2w+1)x
2w+2

, and the position

of its center of mass is (2w+1)x
2(2w+2)

from the left end of this segment. If we match the cluster

region of the child node, whose length is 2w + 1, to this segment by fitting these centers of

mass, the position of the left end of this cluster region is (2w+1)x
4w+4

− 2w+1
2

= (2w+1)(x−2w−2)
4w+4

11

from the left end of this segment (see Figure 3 (c)). Considering shape matching for another

child node, the total length of the goal shape is x − 2 × (2w+1)(x−2w−2)
4w+4

= x
2w+2

+ 2w + 1

(see Figure 3 (d)). In the case of the parent node, if we consider shape matching without

scaling using Equation (2), the length of its goal shape is 2w + 2 (see Figure 3 (e)). On the

contrary, if we use shape matching with scaling, the length of the goal shape of the parent

node is x (see Figure 3 (f)) and this case corresponds to shape matching using the following

equation: gi = A(x0
i −x0

cm)+xcm. To fit the result we integrate these two results at the rate

(1−β) : β; applying shape matching using Equation (5) to the result using the two children

nodes, we get the equation (1 − β)(2w + 2) + βx = x
2w+2

+ 2w + 1, from which we can

obtain the value of β;

β =
1

2w + 2
. (7)

β is determined only by w and is independent of the deformed shape x. The above is the

case of a node at the smallest subdivision level and its parent node. In the same way, we

calculate the value of β for nodes with coarser subdivision levels recursively, the value of β

of each node in 1D is defined as

β1D = 1 − 2w + 1

2w + mi

. (8)

From this 1D case and experiments, the value of β is defined as, in 2D,

β2D = 1 − (
2w + 1

2w +
√

mi

)2, (9)

12

and in 3D,

β3D = 1 − (
2w + 1

2w + 3
√

mi

)3. (10)

Changing the Subdivision Level of Nodes

We explain the condition for changing the subdivision level of nodes. During shape match-

ing in each cluster region, the scaling matrix S is calculated via polar decomposition A =

RS. The diagonal components in the matrix S show the rate of magnification of the cluster

region along each axis. If these values exceed a threshold, the strain in this cluster region by

deformation is considered large and the node is replaced by its children nodes.

Fracturing

Fracturing is decided by the distance between two nodes neighboring each other at the small-

est subdivision level. The neighbor nodes are the 26 neighbors along three axes and diagonal

directions. When an object is fractured, crack surfaces are generated as follows. Suppose

that fracturing occurs between lattice cells li and lj that are neighbors each other, and crack

surfaces are generated between their adjacent faces fi and fj . The borders of these new

crack surfaces are not matched to polygonal meshes, therefore, our method uses Marching

Squares. See Figure 4 for an example of fracturing of a sphere. If the lattice cells are sim-

ply separated off, the boundary of the crack surfaces does not follow the object’s surface

(i.e., polygonal mesh), and the crack surfaces exhibit brick-like regular displacements of

13

the lattice. To reform the boundary, our method uses Marching Squares; the boundary is

dertermined whether each vertex of fi and fj is inside or outside of the object and displaced

according to the distance to the object’s surface. To make the crack surfaces more plausible,

our method gives an offset to each vertex of fi and fj using Perlin Noise.

Merging Nodes

In our method, nodes that have a common parent are dynamically merged during fracturing

if the rates of magnification along each axis are below a threshold in order to reduce the

computational cost that increases with the number of nodes. Nodes to be merged are grouped

using connectivity information and then substituted with their parent node. Note that the

number of children for a parent node might be reduced by fracturing. If so, the position and

the mass of such a parent node are updated to the center of mass and the sum of mass of its

children nodes, respectively (see Figure 5 (a)). Even after merging, the crack surfaces can

be represented in detail because the vertex coordinates of crack surfaces are interpolated in

the cell of the parent node.

Results

The experiments in this paper were conducted on a PC with a Pentium 4 3.0GHz and 1.0GB

RAM, and the program was written with C++ and OpenGL. We show the results of the 3D

simulations of deformations and fracturing with collisions between other objects and the

14

deformable object itself. For collision detection, our method allocates a sphere that centers

each node and has a radius proportional to the mass of the node, and detects sphere-sphere

collisions.

Figures 7 (a) - (c) show the results of the simulation with the Bunny model. Lattice cells

are dynamically subdivided if the distortions are large, separeted off if fracturing occurs,

and merged if the distortions become small. The number of nodes representing the Bunny is

2248 in LSM while 207 in our method. In addition, the computational time is 59 msec per

timestep in LSM while 3 msec per timestep in our method. That is, our method achieved

about 20 times speed up compared with LSM.

Figures 7 (d) - (i) show the results of the simulation uses the Elephant models. The

performance of this simulation are 45 fps with 5 objects, 14 fps with 10 objects and 7 fps

with 15 objects.

Comparing Deformations

In this section, we discuss the effect of stiffness control based on the parameter β. We com-

pare Steinemann et al.’s method and our method with regard to the accuracy of deformations

using a uniform lattice, i.e., LSM. Each simulation starts from the same initial condition.

The accuracy of deformations are calculated as the differences of coordinates of nodes, and

their averages and standard deviations are plotted. The coordinates are normalized so that

the longest diagonal length of the bounding box becomes 1.

15

Figure 6 shows the results of freely-falling Glob models simulated by the three methods.

After 500 time steps (Figure 6(b)), the average and standard deviation are: 0.203 and 0.113

by Steinemann et al.’s method, 0.077 and 0.036 by our method, respectively. Compared with

Steinemann et al.’s method, our method yields approximately 1/3 averages and standard

deviations. Figure 6(c) shows the graph of the averages. As demonstrated in these results,

we conclude that our method is better in terms of numerical accuracy and the visual quality

than Steinemann et al.’s method.

Effect of Merging Nodes on Computational Cost

We show the effect to computational cost of merging nodes in the 3D simulation of fractur-

ing with and without merging where the Bunny model is fixed by its head and fractured by

the force of gravity (see Figures 7 (a) - (c)). Figure 5 (b) shows the graph of the computa-

tional cost, which is reduced by merging nodes.

Conclusion and Future Work

This paper has presented a fast simulation technique of deformation and fracturing based

on shape matching by representing objects with a hierarchical lattice, and has represented

crack surfaces in detail by applying adaptive subdivision. Our method has the following

three contributions: Our method

• does not change the stiffness of a deformable object, unlike Steinemann et al.’s method,

16

when adaptive subdivision is applied,

• applies dynamic subdivision to fracturing objects considering the condition of defor-

mation and fracturing, and

• reduces computational cost by merging nodes if these distortions are little.

As for a limitation of our method, external forces are slowly propagated through a de-

formable object because, within a single time step, the external forces only affects the clus-

ter regions that contain particles pushed or pulled by the forces. Moreover, the deformation

methods based on shape matching do not account for the laws of physics; for example, the

volume of a deforming object is not preserved.

For future work, we would like to solve these problems without loss of the interactive

speed.

References

[1] D. Terzopoulos, J. Platt, A. Barr, and K. Fleischer. Elastically deformable models. In

Proc. of SIGGRAPH 87, pages 205–214, 1987.

[2] M. Müller, B. Heidelberger, M. Teschner, and M. Gross. Meshless deformations based

on shape matching. In Proc. of SIGGRAPH 05, pages 471–478, 2005.

[3] A. R. Rivers and D. L. James. FastLSM: Fast lattice shape matching for robust real-

time deformation. In Proc. of SIGGRAPH 07, number 82, 2007.

17

[4] D. Steinemann, M. A. Otaduy, and M. Gross. Fast adaptive shape matching deforma-

tions. In Proc. of the 2008 ACM SIGGRAPH/Eurographics Symposium on Computer

Animation, pages 87–94, 2008.

[5] A. W. Bargteil, C. Wojtan, J. K. Hodgins, and G. Turk. A finite element method for

animating large viscoplastic flow. In Proc. of SIGGRAPH 07, number 16, 2007.

[6] G. Debunne, M. Desbrun, M. P. Cani, and A. H. Barr. Dynamic real-time deformations

using space and time adaptive sampling. In Proc. of the 28th annual conference on

Computer graphics and interactive techniques, pages 31–36, 2001.

[7] D. Metaxas and D. Terzopoulos. Dynamic deformation of solid primitives with con-

straints. In Proc. of SIGGRAPH 92, pages 309–312, 1992.

[8] M. Müller, J. Dorsey, L. McMillan, R. Jagnow, and B. Cutler. Stable real-time defor-

mations. In Proc. of the 2002 ACM SIGGRAPH/Eurographics Symposium on Com-

puter Animation, pages 49–54, 2002.

[9] N. Molino, Z. Bao, and R. Fedkiw. A virtual node algorithm for changing mesh topol-

ogy during simulation. In Proc. of SIGGRAPH 04, pages 385–392, 2004.

[10] J. F. O’Brien and J. K. Hodgins. Graphical modeling and animation of brittle fracture.

In Proc. of SIGGRAPH 99, pages 287–296, 1999.

[11] J. F. O ’Brien, A. W. Bargteil, and J. K. Hodgins. Graphical modeling and animation

of ductile fracture. In Proc. of SIGGRAPH 02, pages 291–294, 2002.

18

[12] N. Sukumar, N. Mos, B. Moran, and T. Belytschko. Extended finite element method

for three-dimensional crack modeling. International Journal for Numerical Methods

in Engineering 48, 11:1549–1570, 2000.

[13] M. Müller, R. Keiser, A. Nealen, M. Pauly, M. Gross, and M. Alexa. Point based

animation of elastic, plastic and melting objects. In Proc. of the 2004 ACM SIG-

GRAPH/Eurographics Symposium on Computer Animation, pages 141–151, 2004.

[14] M. Pauly, R. Keiser, B. Adams, P. Dutre, M. Gross, and L. J. Guibas. Meshless anima-

tion of fracturing solids. In Proc. of SIGGRAPH 05, pages 957–964, 2005.

[15] M. Müller and M. Gross. Interactive virtual materials. Graphics Interface 2004, pages

239–246, 2004.

[16] M. Müller, M. Teschner, and M. Gross. Physically-based simulation of objects repre-

sented by surface meshes. In Proc. of Computer Graphics International 2004, pages

26–33, 2004.

[17] A. Nealen, M. Müller, R. Keiser, E. Boxerman, and M. Carlson. Physically based

deformable models in computer graphics. Computer Graphics Forum 25, 4:809–836,

2005.

[18] Berthold K. P. Horn. Closed-form solution of absolute orientation using unit quater-

nions. Journal of the Optical Society of America, A 4 4:629–642, 1987.

19

(a)

(b)

w = 1 w = 2

Figure 1: 2D illustrations for shape matching and cluster regions: (a) A circle represents

a node and lines connecting circles represent the initial shape of the object. The left image

is the initial shape, and the middle image is the goal positions through shape matching.

The arrows in the right image is the restoration force added to each node towards the goal

shape. (b) An object is enclosed by a lattice and nodes are placed on those lattice points

(left). Note that, for 3D deformations by the methods of Steinemann et al. and ours, nodes

locate at centers of lattice cells, not at lattice points. A part surrounded by black thick lines

shows a cluster region. It becomes a 3 × 3 square region if w = 1 (middle) and a 5 × 5

square region if w = 2 (right).

20

(a)

(b)

Figure 2: Adaptive subdivision of a deformable model: (a) First, we start that all nodes

are the finest subdivision level (left). If the mass of each node exceeds a threshold, we

change children nodes to this node. The (middle) image shows the result to change to nodes

at one time, and the (right) image shows the result to change to nodesat two times. (b)

The red square is a cluster region in question, the blue circles represent nodes and the black

squares are a lattice. If a part of a lattice is in a cluster region (left), the mass of a part of

the node in this cluster region are computed by checking its descendant (middle), and we

change the mass of the node in this cluster region to mi,R in Equation (6) (right).

21

(a)

(b)

(c)

(d)

(e)

(f)

Figure 3: Modification of adaptive shape matching for consistency in a 1D example:

Blue circles show nodes and red bars show the goal shapes. Suppose that (a) a parent node

(left) and its two children nodes (right) are deformed so that (b) the length of the shape

becomes x. Without scaling, the length of the goal shape becomes (d) x/(2w + 2) + 2w +

1 when applying shape matching to (c) each child node, while it becomes 2w + 2 when

applying to (e) the parent node. We linearly blend the results (f) with and (e) without scaling

using an appropriate parameter β so that the length of the goal shape matches with (d) that

with the two children nodes. 22

(a) (b)

(c) (d)

(e) (f)

Figure 4: The process of creating crack surfaces: When (a) a sphere is (b) fractured,

crack surfaces are generated (c-f). (c, e) If the crack surfaces are represented with raw

lattice cells, the results look unnatural because of brick-like displacements. To improve the

visual plausibility, (d, f) we displace the surface using Perlin Noise.

23

(a)

(b)

Figure 5: The illustrations of merging nodes and the graph of computational times:

(a) The red lines represent a lattice and the green points represent nodes. If we look at

nodes surrounding blue circles, the number of nodes is one before fracturing (left) and the

number of nodes is four and these are divided into two groups (middle). The nodes in

each group are then merged and substituted by a parent node (right). (b) In this graph, the

vertical axis shows computational time per time step and the horizontal axis shows the time

step. These computational costs are nearly equal before fracturing (80 time step). After

fracturing, simulation time without merging is about constantly 8 msec. On the contrary,

after fracturing, simulation time with merging temporarily increases to compute merging

nodes, but, after this, simulation time is about 4 msec.

24

(a)

(b)

(c)

Figure 6: Comparison of deformation by each method: (a) From left, the object repre-

sented by polygonal meshes, a uniform lattice and an adaptively-subdivided lattice. The

green spheres represent nodes centering lattice cells. (b) From left, the results of LSM,

Steinemann et al.’s method and the proposed method. (c) At 320 time step, an object col-

lides with the ground and deforms, and after that, the difference becomes large. Our method

yields visually better deformation as the difference with respect to the result of LSM is

smaller than that of Steinemann et al.

25

(a) No. of nodes: 207 (b) No. of nodes: 623 (c) No. of nodes: 343

(d) (e) (f)

(g) (h) (i)

Figure 7: Fracturing of 3D models: (a) - (c) The head (red) of the Bunny model is fixed,

and the model is fractured by the gravity. The results in the top row are rendered with

polygonal meshes while the images in the second row show show nodes (green spheres) and

lattices (red lines). (d) - (i) Fifteen Elephant models are fallen, collide with each other and

fractured. If an object touched the pink sphere in the middle, the touching part is fixed.

26

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

